

USE OF PLASTIC WASTES IN ROAD CONSTRUCTION

BY

VINOTH.N

PROBLEMS DUE TO PLASTIC WASTE

Land Filling

2. Incineration

VARIOUS BITUMINOUS ROAD DEFECTS

- 1.Block Cracks
- 3. Diagonal Cracks
- 5. Corrugations
- 7. Rutting
- 9. Flushing
- 11. Raveling
- 13. Potholes

- 2. Crocodile Cracks
- 4. Slippage Cracks
- 6. Depression
- 8. Shoving
- 10. Polishing
- 12. Delimitation
- 14. Kerb Defects

SOLUTION

RAW MATERIALS FOR ROAD

CONSTRUCTION

Aggregate

❖Bitumen (Tar)

Waste Plastics

ROAD AGGREGATE CHARACTERISTICS

Colour	Black > Grey>White
Strength	Need to be Good
Surface Roughness	More Preferred
Porosity	2% - Tolerance
Moisture Absorption	2% - Tolerance

Structure- long molecules

❖Viscosity – not suitable beyond 160°C

PROCESS INVOLVED IN PRODUCING WASTE PLASTIC FLAKES

SEGREGATION.

SHREDDING PROCESS

CLEANING.

COLLECTION PROCESS

CHARACTERIZATION OF WASTE PLASTICS

Plastic is a good binder.

% OF PLASTIC COATING OVER AGGREGATE	COMPRESSIVE STRENGTH (MPA)	BENDING STRENGTH (MPA)
10%	250	325
20%	270	335
30%	290	350
40%	320	390

* THERMAL STUDY

	Solubil	ity	Coftonino		Decom		Ignition	
Polymer	Water	EPT*	Softening Temp in Deg.C	Products reported	position Temp Deg.C	Products reported	temp. range in Deg. C	Products reported
PE	Nil	Nil	100-120	No gas	270-350	CH ₄ ,C ₂ H ₆	>700	CO,CO2
PP	Nil	Nil	140 - 160	No gas	270-300	C_2H_6	>700	CO,CO2
PS	Nil	Nil	110-140	No gas	300-350	C_6H_6	>700	CO,CO2

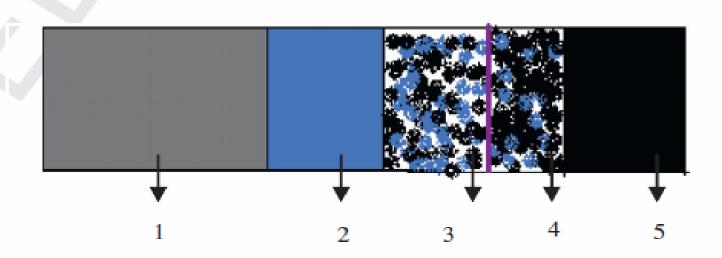
FIELD TRIALS

There are two type of field trials

1.Dry process

2. Wet process

DRY PROCESS


Heated aggregates

Adding shredded plastic

Aggregate-plastic- Bitumen Mix

Key: Black- Bitumen; Blue- Polymer; Grey - Aggregate

- Aggregate.
- 2. Area of Plastics bonded with aggregate (polymer coating).
- Area of bitumen-plastics blend (due to diffusion between molten plastics and hot bitumen).
- 4. Area of Loosely bonded bitumen with dispersed plastics.
- 5. Area of Plain bitumen layer.

CHARACTERISTICS OF POLYMER MODIFIED BITUMEN

*The use of higher percentage of plastics in polymer modified bitumen is not favorable.

_ _

% of Plastics	Ductility (cm)	Penetration (mm)	Softening Point (°c)
1%	64	95	54
2%	55	90	50
3%	20	80	50
5%	11	55	72
10%	7	Nil	75

CHARACTERISTICS OF PLASTIC COATED AGGREGATE

Plastics improves aggregate impact value.

Helps to improve the quality of flexible pavement

Percentage of Plastics	Aggregate Impact value
Nil	25.4
1%	21.20
2%	18.50

COST BENEFIT ANALYIS FOR ROAD CONSTRUCTION

MATERIAL NEEDED	MATERIAL NEEDED	PLASTIC-TAR ROAD
80/100 Bitumen	11250Kg	10125Kg
Plastic waste	NIL	1125Kg
Cost	Rs.393750	(BIT)Rs.354375+(plastic)Rs.13 500 = Rs. 367875
Cost Reduced	NIL	Rs. 25875.00
Carbon Credit Achieved on avoiding burning of plastics	NIL	3.5tonnes

COMPARATIVE STUDY OF PERFORMANCE

TEST	BITUMEN	PLASTIC TAR ROAD	REASONING – PLASTIC TAR ROAD
	ROAD		
Skid Resistance <65	More than the expected	Within the limit 45	Not very smooth – supported by texture

Less depth

Less Bump

Rebound Less

Moderate Value

>0.6

>4000

0.5 - 1

2.55

value

Due to bonding- in

Better binding- less

rutting and raveling

taken care of by the

Supported by bonding base

permissible limit

surface defect is

plastic tar road

Better binding

value 76

More depth

More bumps

Rebound slightly

0.83

5200

High 1.55

2.88

Moderate

Sand Texture

Roughness

Benkelman beam

.6-.8

4000

0.5 - 1

Density

2.86

ADVANTAGES OF PLASTIC ROAD

- Use higher percentage of plastic waste.
- Reduce the need of bitumen by around 10%.
- Increase the strength and performance of the road.
- Reduce the cost
- Generate jobs for rag pickers.
- Develop a technology, which is eco-friendly.

DISADVANTAGES OF PLASTIC ROADS

* Toxics present in the co-mingled plastic waste would start leaching.

*But the presence of chlorine will definitely release HCL gas.

CONCLUSION

Plastic road would be a boon for India's hot and extremely humid climate where durable and eco-friendly roads which will relive the earth from plastic waste.

THANK YOU