TOWARDS INTEGRATED MANAGEMENT OF WESTERN GHATS

M D Subash Chandran and T.V. Ramachandra Centre for Ecological Sciences Indian Institute of Science Bangalore-560012

WATER KNOWS NO RELIGION! In all human traditions water is sacred

Water is key environmental issue of 21st century. Streams from forested mountains are sources of most potable water.

WESTERN GHATS : WATER TOWER FOR PENINSULAR INDIA

Influence of the Western Ghats and its shola ecosystems on the India monsoon weather patterns of the region, has been considered one of the e examples of the tropical monsoon

What do we have?

Western Ghats – 90million years old – Biodiversity hotspot
Water-tower of peninsular India

Biogeography : distribution of species and ecosystems in geological time. Organisms and biological communities vary in a regular fashion along geographic gradients of latitude, elevation, isolation and habitat area.

Which species? Where? Why? Why not?

ORIGIN OF WESTERN GHATS

About 88 míllíon years ago: Indía's separatíon from Madagascar

An upliftment or vertical split? Gunnell & Harbor, 2008

Western Ghats: one of the classic examples of passive margin great escarpments in the world (?) -V.S. Kale, 2010

Or: Is it due to the vertical split of a mountain that linked Madagascar and Indian Peninsula (?)

K/T BOUNDARY -DECCAN VOLCANISM-SEPARATION FROM SEYCHELLES

65 Ma massive volcanism produced - largest continental lava deposit (Deccan Traps) in 200 Million years. covering 500,000 sq. km.

Photo: Hetu Sheth

CLIMAX RAIN FORESTS

REFUGIA IN SOUTHERN WESTERN GHATS

- S. W. Ghats: High degree of endemism. Rainfall throughout the year. Old lineages of plants and frogs.
- Changanassery fossils: 40,000 yrs ago

 Late Quaternary pollen deposit of moist evergreen forest & deciduous forest – when xeric glacial climate prevailed in Indian peninsula.
- Survival of Tertiary rain forests as riparian vegetation – rejuvenated in Holocene as modern extant flora (Farooqui et al., 2010)

Sharavathi flowing through ancient rain forests

Information packing & natural association in tropical rain forest

©2009 mongabay.com

SIMPLIFICATION OF ECOSYSTEMS OPPOSITE PROCESS

EARLY PEOPLES' EFFORTS FOR HARMONY WITH NATURE

- Forest cutting for agriculture was a necessity
- Hunting was necessity
- War was necessity

- Sacred groves & sacred trees
- Sacred animals
- Vedic roots of Ahimsa
- Upanishads strengthen the concept
- Jainism & Buddhism took it to greater heights
- Mahabharata: "Ahimsa Paramo-dharma"

Mountains merge with estuaries along the west coast

NRC-11SC

AHGHANASHINI ESTUARY: LIVELIHOODS

ANNUAL PRODUCTION: 22,000 TONS (IN 2008) PEOPLE ENGAGED: 2500 (WOMEN : ABOUT 700) ANNUAL PRODUCTION: RS. 66 CRORES

HERITAGE SITE STATUS FOR CLAMBEDS OF AGHANASHINI ESTUARY

ESTUARIES	WATERSPREAD (Ha)	NO OF FISHERMEN	NO OF FISHING DAYS
KALI -Dams	2813	1775	307,320
GANGAVALI	558	996	246,060
AGHANASHINI	2842	6139	1,497,200
SHARAVATHI- Dams	1336	283	41,420
	N		

Mangroves (L) & Fresh water swamps (R). Plant roots in saturated soils

Dry months increase with latitude & decrease with altitude

Legend

Under 20 cm 20 - 40 cm 40 - 50 cm 60 - 100 cm 100 - 150 cm 150 - 250 cm

LAT ° N	DRY MONTHS ALTITUDE (M)						
	0- 300	300- 600	600-1200	>1200			
19-20	8	7	7				
18-19	8	7	7				
17-18	7	7	6.5	6			
16-17 C	6.25	6					
15-16	5.75	5.5	6				
14-15	5.5	5.5	5.5				
13-14	4.25	5	4	3.5			
12-13	4	3.75	3.5	3.5			
11-12	3.75	3	2.75	2.5			
10-11	2.8	3	2.75	2.25			
9-10	2.5	2.3	2.25				
8-9	2.5	2.1	2	2			

	8-	10-	12-	14-	16-18	18-20			4.96 C	19	And Sec. Sec. 1	
	10	12	14	16			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	A CARE				S.A.
		_					-				يندي السيد (
Dipterocarpus	P	P	P				A					
bourdillonii												
D. indicus	P	Р	Р	P			En ·			Sel.		
Нореа			Р					1. 17			- L	
canarensis												
Hopea erosa	Р	Р					Last Dipi	terocarp	us : in	a Tirth	ahalli k	an
Hopea glabra	Р	Р				()						
Hopea parviflora	Р	Р	Р	Р		8-	-					
Hopea ponga	Р	Р	Р	Р	Р		No.					Å
Нореа	Р	Р					Martin A					
racophloea									Chy .			200
Hopea utilis	Р	Р										A
Vateria indica	Р	Р	Р	Р	Р						7	
Vateria	Р	Р							A Mar		the second	
macrocarpa										Hark L	10 M	
TOTAL	10	10	6	4	2	0				A	ALL S	88 8

FRESH WATER FISHES: LATITUDINAL DECLINE

	Threat status	Latitudinal distribution (in degrees N)								
Threat-		8-10	10-12	12-14	14-16	16-18	18-20			
ened	CE		02	03	01	01	02			
	EN	20	22	16	07	06	06			
	VU	06	10	08	05	03	02			
Total threa	itened	26	34	27	13	10	10			
Total ende	mics	76	95	76	40	34	31			

Total fishes of Western Ghats: 176 NE+116 endemics

Latitudinal decrease in of tree endemism in Western Ghats

CONGREGATIONS OF AMPHIBIANS IN SWAMP FORESTS: 14°N

Amphibian groups	No. of species	Habitat	Endemic status	IUCN status
Caecilians	2	Semi-aquatic: 2	Endemic: 2	DD: 2
Toads	2	Terrestrial: 1 Arboreal: 1	Non-endemic: 1 Endemic: 1	EN: 1 LC: 1
Frogs	31	Semi-aquatic: 17 Aquatic: 6 Arboreal: 8	Non-endemic: 8 Endemic: 23	CR: 1 EN: 4 VU: 5 NT: 2 LC: 12 DD: 7

Philatus ponmudi (CR)

CR–Critically endangered, EN–Endangered, VU–Vulnerable, NT–Non-threatened, LC–Least concern, DD–Data deficient

TORME: SG WITH MYRISTICA SWAMP

HIGH ENDEMISM PRIMEVAL NATURE RICH HYDROLOGY NEW SPECIES: SEMECARPUS KATHALEKANENSIS

Amphibian groups	No. of species	Habitat	Endemic status	IUCN status
Caecilians	2	Semi-aquatic: 2	Endemic: 2	DD: 2
Toads	2	Terrestrial: 1 Arboreal: 1	Non-endemic: 1 Endemic: 1	EN: 1 LC: 1
Frogs	31	Semi-aquatic: 17 Aquatic: 6 Arboreal: 8	Non-endemic: 8 Endemic: 23	CE: 1 EN: 4 VU: 5 NT: 2 LC: 12 DD: 7

CE–Critically endangered, EN–Endangered, VU–Vulnerable, NT–Nonthreatened, LC–Least concern, DD–Data deficient

LTM

Philatus ponmudi

Amphibians of Kathalekan

Great pied & Malabar grey hornbills: Dispersers of swamp nutmegs

Conservation values of forest areas SGs among highest lundaoo conservation value Karv sites CV based on endemism, threatened sp **Basal area** Legend **Conservation Value** iddapur **Tree heights** + Very high (> 120) High (80-120) Moderate (40-80) Diversity Honnay ▲ Low (0-40) 19.04 kilometers

Scale: 1:1,713,000

Bhatkal

RANKING FOR CONSERVATION VALUES

