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Abstract 
 
Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning 
involving plethora of issues including provision of basic amenities (like electricity, water, sanitation, 
transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with 
causal factors. Identifying, delineating and mapping landscapes on temporal scale provide an 
opportunity to monitor the changes, which is important for natural resource management and 
sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-
polarization remote sensing data with efficient classification algorithms and pattern recognition 
techniques

 
aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater 

Bangalore by: (i) characterisation of direct impervious surface, (ii) computation of forest fragmentation 
indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for 
solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious 
surface characterisation. Fragmentation indices were used to classify forests – interior, perforated, 
edge, transitional, patch and undetermined. Based on this, urban growth model was developed to 
determine the type of urban growth – Infill, Expansion and Outlying growth. This helped in visualising 
urban growth poles and consequence of earlier policy decisions that can help in evolving strategies 
for effective land use policies. 
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1. Introduction 
 
Urbanisation is a form of metropolitan growth in 
response to incomprehensible combination of 
economic, social, and political forces and to the 
physical geography of an area. This could be 
planned (in the form of townships) or unplanned 
(organic). Many organic cities are now 
undergoing redevelopment for economic 
purposes with new roads, infrastructure 
improvements, etc. It results in the increase in 
population, in proportion to the region's rural 
population. This phenomenona is very rapid in 
India with urban population growing at around 
2.3 percent per annum. The 21

st
 century is 

witnessing "rapid urbanisation of the world‟s 
population", as the global proportion of urban 
population rose dramatically from 13% (220 
million in 1900) to 29% (732 million, in 1950) to 
49% (3.2 billion, in 2005) and is projected to rise 
to 60% (4.9 billion) by 2030 [1]. An increased 
urban population and growth in urban areas is 
inadvertent with dramatic increase in population 
mainly due to migration. There are 35 urban 
agglomerations/cities having a population of 
more than one million in India (in 2001). Of the 
4000 plus urban agglomerations, about 38 
percent reside in just 35 urban areas, thus 
indicating the magnitude of urbanisation. 
Overall rise in population of urban poor or 
increase in travel times owing to congestion in 
road networks are indicators of urban 
governance and planning. As Indian cities 
continue to urbanise, the land use (LU) plays a 
determining role in the quality of land, water and 
air environment. This pose serious challenges 
to the decision makers in the city planning and 
management process involving plethora of 
issues like infrastructure development, traffic 
congestion, and basic amenities (such as 
electricity, water, and sanitation), floods, heat 
island, loss of aquatic eco-system, carbon 
footprint, enhanced level of pollution, higher 
instances of diseases, etc. [2]. Thus, the 
administration at all levels: local bodies, federal 
and national governments are facing the brunt 
of rapid urban growth. It is imperative for 
planning and governance to facilitate, augment 
and service the requisite infrastructure over time 
systematically. This requires an understanding 
of landscape characterisation focusing on 
agents of urban dynamics. 
 

Problem Statement – Identifying, delineating 

and mapping landscapes on temporal scale 
provide an opportunity to monitor the changes, 
which is important for natural resource 
management and sustainable planning 
activities. Multi-source, multi-sensor, multi-
temporal, multi-frequency or multi-polarization 

remote sensing (RS) data [3] with pattern 
recognition techniques

 
[4] aid in capturing the 

dynamics. Pattern classification and modeling 
are very useful in landscape characterisation for 
addressing the problems of sprawling cities and 
urban management. The objectives of this work 
are to understand the landscape dynamics in 
Greater Bangalore through visualization by i) 
modeling impervious surface, ii) computation of 
forest fragmentation indices, iii) quantification 
and categorisation of urban changes and (iv) 
modeling of urban dynamics. 
 
Visuaisation - Current Trend and 
Techniques: Geovisualisation helps to 

explore real-world environments and model 
„what if‟ scenarios based on spatio-temporal 
data.  This aids as a tool for modeling the 
environmental interests in policy planning. 
Some of the well known applications are 3D 
photorealistic representations to simulate urban 
redevelopment and possible pollution diffusion 
over the next few years. Techniques used in 
geovisualisation are agent based cellular 
automata models, genetic algorithms, etc. 

 

2. Methods 
2.1 Orthogonal Subspace Projection 
(OSP) – Pixel usually contain contributions 
from more than one class, when object size is 
smaller than the pixel resolution (mixed pixels) 
except in higher spatial resolution data. 
Standard classification techniques, which 
attribute a single class to the entire pixel, are 
therefore inappropriate to low spatial resolution 
satellite images from space-borne sensors. This 
motivates the development of algorithms which 
unmix the coarse spatial data or, in other words, 
perform classification at a sub-pixel level. The 
main objective is to find out the proportion of 
each category in a given pixel, or in other 
words, unmix the pixel to identify the categories 
present within the pixel. In order to address this 
problem, unmixing techniques have been 
developed to exploit sub-pixel level information 
for image analysis [5], where sub-pixel class 
composition is estimated through the use of 
techniques, such as linear mixture modeling [6], 
supervised fuzzy-c means classification and 
artificial neural networks, etc.  
 
Linear unmixing is based on an assumption that 
the spectral radiance measured by the sensor 
consists of the radiances reflected collectively in 
proportion to the sub-pixel area covered by 
each material. Let K be the number of spectral 
bands in the multispectral / superspectral data 
set, and P, the number of distinct classes of 
objects in the physical scene. Associated with 
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each pixel is a K-dimensional vector y whose 
components are the gray values corresponding 
to the K bands. Let E = [e1, e2,…, eP], where {ei} 
is a column vector representing the spectral 
signature of the i

th
 target material or category. 

The column vectors of the K x P matrix E are 
called end-members. For a given pixel, the 
abundance fraction of the p

th
 target material 

present in a pixel is denoted by αp, and these 
values are the components of the P-

dimensional abundance vector α. Assuming the 
linear mixture model, the observation vector y is 
related to E by 

y = E  +       (1) 

where   accounts for the measurement noise. 

We further assume that the components of the 

noise vector   are zero-mean random 

variables that are independent and identically 
distributed. Therefore, the covariance matrix of 

the noise vector is 2 I , where 
2  is the 

variance, and I is K x K identity matrix. The 
conventional approach [7] to extract the 

abundance values is to minimise || y - E || , 

and the estimate for the abundance is 
T -1 Tα = (E E) E y    (2) 

which is termed as the Unconstrained Least 
Squares (ULS) estimate of the abundance. 
Imposing the sum-to-one constraint on the 

abundance values while minimising || y - E || , 

gives the Constrained Least Squares (CLS) 
estimate of the abundance as, 

T -1 Tα = (E E) E - 1
2

 
 
 

y   (3) 

where, 
T T -1 T

T -1

2(1 (E E) E -1)
 = 

1 (E E) 1T


y
  (4) 

 
Chang (2005) [8] came up with a technique 
called Orthogonal Subspace Projection (OSP) 
in the signal processing domain, which is used 
here as a classification technique based on two 
aspects: 1) how to best utilise the target 
knowledge provided a priori and 2) how to 
effectively make use of numerous spectral 
bands. Briefly, the technique involves (i) finding 
an operator which eliminates undesired spectral 
signatures, and then (ii) choosing a vector 
operator which maximises the signal to noise 
ratio (SNR) of the residual spectral signature. In 
order to find the abundance of the p

th
 target 

material (αp), let the corresponding spectral 
signature of the desired target material be 
denoted as d. The term Eα in equation (1) can 
be rewritten to separate the desired spectral 
signature d from the rest as: 

pE  = α  +  d Rr    (5) 

where r contains the abundance of the rest of 
the end-members, and R is a K x P - 1 matrix 
containing the columns of E except for the 
column vector d. We rewrite (1) as 

p = α  +  + y d Rr η .   (6) 

The interfering signatures present in R can be 
removed from (6) by the operator, 

T -1 TP = (  - ( ) )I R R R R   (7) 

which is used to project the vector y into a 
space orthogonal to the space spanned by the 
interfering spectral signatures. Therefore, 
operating on y with P, and noting that PR = 0, 
we get 

pPy = P α  + Pd η .   (8) 

The next step is to find an operator w
T
 which 

maximizes the SNR given by 
T 2 T 2 T T 2

p p

T 2 T T

(w P α ) w P α d P w)
SNR =  = 

{(w P ) } w P {( )P w
T

 

d d

η ηη

 (9) 

                               
2

2 T T T
p

T T

α w P P w
 = 

w PP w

 
 
 

dd  

 
Maximizing the SNR leads to the generalized 

eigenvalue problem: 
T T T P P w= PP wdd . 

The eigenvector corresponding to the maximum 
eigenvalue is the vector „w‟. It can be shown 
that the w which maximises the SNR is given by 
w = kd.     (10) 
Therefore, an optimal estimate of αp is given by 

T T

p
T T

y P Py
 = 

P P


d d
   (11) 

 
In the absence of noise, the estimate matches 
with the exact value as in (6). The value of α is 
the abundance of the p

th
 class (in an abundance 

map) ranging from 0 to 1 in any given pixel. 0 
indicates absence of a particular class and 1 
indicates full presence of that class in that 
particular pixel. There are as many abundance 
maps as the number of classes. Intermediate 
values between 0 and 1 may represent a 
fraction of that class. If the objective is to map 
the impervious surface, then OSP renders an 
impervious surface abundance map, where 
each abundance pixel shows the proportion of 
impervious material (buildings / houses / roads / 
paved surfaces, etc.) in that pixel.       
2.2 Forest fragmentation – Forest 

fragmentation is the process whereby a large, 
continuous area of forest is both reduced in 
area and divided into two or more fragments. 
The decline in the size of the forest and the 
increasing isolation between the two remnant 
patches of the forest has been the major cause 
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of declining biodiversity [9]. The primary 
concern is direct loss of forest area, and all 
disturbed forests are subject to “edge effects” of 
one kind or another. Forest fragmentation is of 
additional concern, insofar as the edge effect is 
mitigated by the residual spatial pattern [10]. 
  
Land cover (LC) map indicate only the location 
and type of forest, and further analysis is 
needed to quantify the forest fragmentation. 
Total extent of forest and its occurrence as 
adjacent pixels, fixed-area windows surrounding 
each forest pixel is used for calculating type of 
fragmentation. The result is stored at the 
location of the centre pixel. Thus, a pixel value 
in the derived map refers to between-pixel 
fragmentation around the corresponding forest 
location. As an example [11] if Pf is the 
proportion of pixels in the window that are 
forested and Pff is the proportion of all adjacent 
(cardinal directions only) pixel pairs that include 
at least one forest pixel, for which both pixels 
are forested then, Pff estimates the conditional 
probability that, given a pixel of forest, its 
neighbour is also forest. The six fragmentation 
model that identifies six fragmentation 
categories are: (1) interior, for which Pf = 1.0; 
(2), patch, Pf < 0.4; (3) transtitional, 0.4 < Pf < 
0.6; (4) edge, Pf > 0.6 and Pf-Pff > 0; (5) 
perforated, Pf > 0.6 and Pf-Pff < 0, and (6) 
undetermined, Pf > 0.6 and Pf = Pff.  
 
When Pff is larger than Pf, the implication is that 
forest is clumped; the probability that an 
immediate neighbour is also forest is greater 
than the average probability of forest within the 
window. Conversely, when Pff is smaller than 
Pf, the implication is that whatever is nonforest, 
is clumped. The difference (Pf - Pff) 
characterizes a gradient from forest clumping 
(edge) to nonforest clumping (perforated). 
When Pff = Pf, the model cannot distinguish 
forest or nonforest clumping. The case of Pf = 1 
(interior) represents a completely forested 
window for which Pff must be 1. 
 
Forest fragmentation indices [12] have two 
parts: (1) Total forest proportion (TFP) and 
Forest continuity (FC). TFP provides a basic 
assessment of forest cover in a region ranging 
from 0 to 1. FC value examines only the 
forested areas within the analysis region. Its 
measure specifically utilises the results from the 
forest fragmentation model. 

  (12) 
 

     (13) 

Weighted values for the weighted forest area 
(WFA) are derived from the median Pf value for 
each fragmentation class (equation 14): 
 

     (14) 
The rationale is that, given two regions of equal 
forest cover, the one with more interior forest 
would have a higher weighted area, and thus be 
less fragmented. To separate further regions 
based on the level of fragmentation, the weight 
area ratio is multiplied by the ratio of the largest 
interior forest patch to total forest area for the 
region. FC ranges from 0 to 1. 

2.3 Urban Dynamics Characterisation – 
An urban dynamics model has spatially detailed 
data with fine spatial grain, examines the whole 
landscape and assesses urban growth in all 
areas, avoids spatial averaging, maintains 
spatial pattern and configuration, and is 
consistent over time. The urban growth model 
used here is based on the modified forest 
fragmentation model developed by Ritters et al., 
(2000) [13]. The urban dynamics model uses 
urban and non-urban classes to create 
fragmentation image instead of forest and non-
forest in forest fragmentation model. Input data 
consist of multi-dates LC with a minimum of 
three classes; urban (developed), non-urban 
(non-developed), and water. Instead of using a 
forest versus non-forest binary image to create 
a forest fragmentation map, the first step of the 
urban growth model uses a non-developed 
versus developed image to create a “non-
developed” fragmentation image. The single 
date fragmentation map consist of three 
“fragmented” classes that are combination of 
the five classes previously described (interior, 
patch, transitional, edge and perforated). The 
first is interior, which occurs when all pixels in a 
3 x 3 window are non-developed. The second 
class is perforated, which occurs when between 
60 % and less than 100 % of pixels in a 3 x 3 
window are non-developed. The final class is 
patch, which occurs when fewer than 60 % of 
pixels in a 3 x 3 window are non-developed. 
Two dates of fragmentation maps are used to 
create change map. There are three types of 
change classes – the first type consists of no 
change classes (including developed, water and 
interior), the second type includes improbable 
changes, likely due to classification error, and 
the third type consists of classes that represent 
urban growth. The classes that indicate urban 
growth are outlined in table 1 along with their 
corresponding urban growth classes. The 
change classes determine the type of urban 
growth. Infill is the development of a small area 
surrounded by existing developed land. 
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Expansion is the spreading out of urban LC 
from existing developed land. Outlying growth is 
an interior pixel that changes to developed, and 
is further classified as either isolated, linear 
branching, or clustered branching (see table 1). 
 
Table 1: Change classes that represent urban 
growth and the corresponding growth types [13] 

   
Significant 

Change Classes 
Type of Growth 

Patch to 
Developed 

Infill Growth 

Perforated to 
Developed 

Expansion Growth 

Interior to 
Developed 

Outlying Growth:    
1. Isolated Growth, 
2. Linear Branching Growth, 
3. Clustered Branching Growth 

 
Their distinction is made using a set of rules. An 
isolated growth is defined as a new, small area 
of construction surrounded by non-urban land 
and some distance from other developed areas. 
A linear branching growth is a road, corridor, or 
linear development surrounded by non-urban 
land and some distance from other urban areas. 
A clustered branching growth is indicative of a 
new, large and dense development in a 
previously undeveloped area. The urban growth 
model produces an urban growth map, which 
consists of five types of growth as well as 
developed land, water, and non-developed land.     

 
3. Study area and Data 
 
Greater Bangalore is the principal 
administrative, cultural, commercial, industrial, 
and knowledge capital of the state of Karnataka 
with an area of 741 square kilometers (sq. km) 
and lies between the latitudes 12°39‟00‟‟ to 
131°3‟00‟‟N and longitude 77°22‟00‟‟ to 
77°52‟00‟‟E (figure 1). Bangalore has grown 
spatially more than ten times (741 sq. km) since 
1949 (69 sq. km.) and is the fifth largest 
metropolis in India currently with a population of 
about 7 million. The mean annual total rainfall is 
about 880 mm with about 60 rainy days a year 
over the last ten years. The summer 
temperature ranges from 18° C – 38° C, while 
the winter temperature ranges from 12° C – 25° 
C. Thus, Bangalore enjoys a salubrious climate 
all round the year.  Survey of India (SOI) 
toposheets of 1:50000 and 1:250000 scales 
were used to generate base layers of the city 
boundary and water bodies. Field data for 
ground control points (GCPs) and training sites 
for supervised classification of RS data were 
collected with a handheld GPS. RS data used 
are   

 Landsat MSS of 1973, TM of 1992, ETM+ 
of 2000 [downloaded from 
http://glcf.umiacs.umd.edu/data/] 

 

 
Figure 1: Study area – Greater Bangalore, India. 

(Self Compiled) 

 IRS (Indian Remote Sensing) LISS (Linear 
Imaging Self Scanner)-III of 1999 and 2006 
[procured from NRSA, Hyderabad, India] 

 MODIS of 2006, 2007 (Moderate Resolution 
Imaging Spectroradiometer) Surface 
Reflectance 7 bands product [downloaded 
from http://edcdaac.usgs.gov/main.asp]  

 Google Earth data (http://earth.google.com) 
served in pre and post classification 
process and validation of the results. 

 

4. Results and discussions 

4.1 Classification of IRS LISS-III (2006) 
data: IRS LISS-III data acquired on 28

th
 March, 

2006 having 3 spectral bands (Green, Red and 
NIR) with 23.5 m spatial resolution were 
georegistered with known GCPs and 
geometrically corrected and resampled to 25 m 
(1360 x 1400 pixels) which helped in pixel level 
comparison of abundance maps obtained by 
unmixing MODIS data (of 2006) with LISS-III 
classified map. The class spectral 
characteristics for four LC categories 
(buildings/urban, vegetation, water bodies and 
others) using LISS-III MSS bands 2, 3 and 4 
were obtained from the training pixels spectra to 
assess their inter-class separability and the 
images were classified using Gaussian 
Maximum Likelihood classifier with training data 
uniformly distributed over the study area 
collected with pre calibrated GPS (figure 2). 
This was validated with the representative field 
data (training sets collected covering the entire 
city and validation covering ~ 10% of the study 
area) and also using Google Earth image 
(http://www.earth.google.com). LC statistics, 
producer‟s accuracy, user‟s accuracy and 
overall accuracy computed are listed in table 2. 
The urban pixels were extracted from the  
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Figure 2: LC classification using LISS-III MSS 

(2006). (Self Compiled) 

 
Table 2: LC details using LISS -III MSS (Self 

Compiled) 

Class Area 
(Ha) 

Area 
(%) 

P*  

(%) 

U*  

(%) 

O*  

(%) 

Builtup  29535 43.2 85.2 84.5  
84.6 

 
Vegetation  19696 28.8 83.5 88.1 

Water 
bodies 

1073 01.6 90.7 80.2 

Others  18017 26.4 78.3 77.7 

P* - Producer’s Accuracy, U* - User’s Accuracy, 
O* - Overall Accuracy 
 

classified image and were used as a benchmark 
to validate the output obtained from OSP. 
 

4.2 Unmixing of MODIS data using 
OSP: MODIS data (of 2006) having 7 bands 
with band 1 and 2 at 250 m and band 3 to 7 at 
500 m spatial resolution were georegistered 
with GCPs, geometrically corrected and bands 
3 to 7 were resampled to 250 m (136 x 140 
pixels) so that all 7 bands are at same spatial 
resolution. Unmixing of MODIS data (250 m) 
were done to obtain abundance map of the 
impervious surface. Visual inspection as well as 
accuracy assessment of abundance image 
showed that OSP algorithm maps impervious 
surface spatially and proportionally similar to 
supervised classified image of LISS-III (of 
2006). The proportions of urban pixels in the 
image (figure 3) range from 0 to 1, with 0 
indicating absence and increasing value 
showing higher abundance.  
Accuracy assessment at pixel level: A pixel 

of MODIS (250 m) corresponds to a kernel of 10 
x 10 pixels of LISS-III spatially (resampled to 25 
m). The builtup abundance map was validated 
pixel by pixel with the LISS-III builtup map. The 
proportion of builtup percentage obtained in 
these 136 x 140 cells were compared using 
three measures of performance – Root Mean 
Square (RMS) error (0.160), Bivariate 
Distribution Functions (BDFs) between LISS-III  

 
 

Figure 3: LC abundance maps (of 2006) for 

builtup, vegetation, water bodies and others. (Self 

Compiled) 

 
classified (real proportion) and MODIS based 
abundance map (predicted proportions), and 
Wilcoxon signed rank test. The bivariate plot 
(figure 4) was helpful in visualising the accuracy 
of prediction by mixture models. While most of 
the points fall between the two 20 % difference 
lines, some points are outside the lines 
indicating that there could be higher or lower 
estimation than the actual values. The 
Pearson's product-moment correlation was 0.84 
(p-value < 2.2e

-16
). 10 % of the difference pixels 

between the LISS-III proportion and the MODIS 
abundance were randomly selected at the same 
spatial locations in the two images by random 
number generation. These difference data 
values failed when subjected to normality test 
(table 3).  
 

 
Figure 4: BDF of LISS-III classified and MODIS 

based abundance map. (Self Compiled) 

  
Table 3: Normality tests for the difference in LISS-

III and MODIS proportions (Self Compiled) 

Normality test  p-value 

Shapiro-Wilk 2.2e
-16

 

Anderson-Darling 2.2e
-16

 

Kolmogorov-Smirnov 2.2e
-16

 

Cramer-von Mises Infinity 

Lilliefors 2.2e
-16
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The data points corresponding to builtup 
proportion in a MODIS pixel and corresponding 
LISS-III pixels were then subjected to box-plot 
and histogram analysis. The distribution was 
symmetrical, hence Wilcoxon signed rank test 
with continuity correction was performed (r = 
0.66, p-value < 2.2e

-16
), which showed less 

evidence against null hypothesis – “true location 
of median of the difference between two data 
sets is equal to 0”. 
 
The abundance image was further analysed 
with a minimum detectable threshold of 10 % 
and in increments of 10 % (i.e., 20 to 30 %, 30-
40 %, …., 90 to 100 %) as shown in figure 5. 
Objects representing different brightness 
classes of impervious surface are typically 
selected to be mapped based on the tonal 
variations in the builtup landscape, which 
constitute spectral classes. The results hold 
great promise for improved accessibility and 
accuracy of this important urban indictor at the 
local and city level. Table 4 depicts the 
percentage impervious surface from abundance 
map. 

 

 

Figure 5: Percent impervious surface layer for the 
Bangalore city. (Self Compiled) 

 

4.3 Forest fragmentation indices: 
Supervised classification was performed on 

temporal datasets for Bangalore city with the 

Bayesian classifier using the open source 

programs (i.gensig, i.class and i.maxlik) of 

Geographic Resources Analysis Support 

System (http://wgbis.ces.iisc.ernet.in/grass). 

Accuracy assessment was done using field 

knowledge, and visual interpretation which 

showed an overall accuracy of 72 %, 75 %, 71 

%, 77 % 85 % and 55 % for the year 1973, 

1992, 1999, 2000, 2006 and 2007. The class 

statistics is given in table 5. From the classified 

raster data, urban class was extracted and 

converted to vector representation for 

computation of precise area in hectares 

indicating 466 % increase in built up area from 

1973 to 2007 as evident from temporal analysis  

Table 4: Percent Impervious surface from 

abundance map (Self Compiled) 

 

 

leading to a sharp decline of 61% area in water 

bodies mostly attributing to intense urbanisation 

process. Rapid urbanisation and sprawl has 

many detrimental effects including the loss of 

valuable agricultural and eco-sensitive (e.g. 

wetlands, forests) lands, enhanced energy 

consumption and greenhouse gas emissions 

from increasing private vehicle use and also 

from modern glazed architectures. Vegetation 

has decreased by 63 % from 1973 to 2007. 

Using the results from classification, forest 

fragmentation indices were computed as shown 

in figure 6 and the statistics are presented in 

table 6.   

 
Table 5: Greater Bangalore land cover statistics 

(Self Compiled) 
 

Class  
Year  

Built 
up 

Vegetation Water 
Bodies 

Others 

1973 Ha 5448 46639 2324 13903 

% 7.97 68.27 3.40 20.35 

1992 Ha 18650 31579 1790 16303 

% 27.30 46.22 2.60 23.86 

1999 Ha 23532 31421 1574 11794 

% 34.44 45.99 2.30 17.26 

2000 Ha 24163 31272 1542 11346 

% 35.37 45.77 2.26 16.61 

2006 Ha 29535 19696 1073 18017 

% 43.23 28.83 1.57 26.37 

2007 Ha 30876 17298 1005 19143 

% 45.19 25.32 1.47 28.01 

 
Applying forest fragmentation indices to a time 
series LC data provided a quantitative 
assessment of the pattern of forest 
fragmentation at each date and a means for 
tracking trends in forest fragmentation. Patch 
forest which was only 2.45 % in 1973 has 
increased up to 9.6 % in 2006 and interior forest  

Percent 

Impervious 

surface 

Area 

Ha % 

0 – 10 % 7019.57 9.97 

11 – 20 % 5853.89 8.31 

21 – 30 % 7410.17 10.52 

31 – 40 % 10126.27 14.38 

41 – 50 % 10199.57 14.48 

51 – 60 % 9149.63 12.99 

61 – 70 % 9863.94 14.01 

71 – 80 % 7050.32 10.01 

81 – 90 % 3485.47 4.95 

91 – 100 % 
274.69 0.39 
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Table 6: Composition of forest fragmentation (Self Compiled) 

  

Fragmentation 
Categories 

1973 1992 1999 2000 2006 

Ha % Ha % Ha  % Ha % Ha % 

Patch 1120 2.45 1950 6.34 1788.6 5.91 1944 6.47 1810 9.57 

Transitional 3789 8.28 4259 13.84 3816 12.62 3999 13.31 3956 20.92 

Edge 14717 32.16 10709 34.81 9516 31.46 10593 35.25 6050 31.99 

Perforated 1453 3.18 1447 4.70 1410 4.66 1219 4.06 1859 9.83 

Interior 24675 53.93 12401 40.31 13715 45.35 12291 40.91 5236 27.69 

Total 45756 100 30766 100 30244 100 30047 100 18909 100 

 

 
Figure 6: Forest fragmentation map (1972, 1992, 

1999, 2000 and 2006). (Self Compiled) 
 
has decreased from 54 % in 1972 to 27.7 % in 
2006. 
 
Using forest fragmentation indices, the state of 
the fragmentation for the city was developed. 
While the forest fragmentation map produced 
valuable information, it was difficult to visualise 
the state of forest fragmentation for tracking the 
trends and to identify the areas where forest 
restoration might prove appropriate to reduce 
the impact of deforestation. The values of TFP 
and FC calculated (table 7) for the temporal 
data were plotted on a graph that specifies six 
conditions of forest fragmentation in figure 7. 
The TFP designations revealed that forest 
fragmentation become more severe as forest 
cover decreases from 100 percent cover 
towards 80 percent. Between 60 and 80 percent 
forest cover, the opportunity for re-introduction 
of forest to connect forest patches is greatest, 
and below 60 percent, forest patches become 
small and more fragmented. The FC regions 
were evenly split and designated high forest 
continuity (above 0.5) or low forest continuity 
(below 0.5). The amount of forest and continuity 
were high in 1973 and decreased substantially 
in 2006 (figure 6). Forest edges and 
perforations have less meaning where the 
amount of forest is low and percolation theory 
[14] identifies two critical values of Pf. In a 
completely forested landscape, for a completely 
random forest conversion on an infinite grid  
 

 
Table 7: Total forest proportion and forest 

continuity (Self Compiled) 
 

State of forest 
fragmentation 

index    

19
73 

19
92 

19
99 

20
00 

20
06 

TFP 0.7
1 

0.
48 

0.
47 

0.4
6 

0.2
9 FC 0.4

5 
0.
30 

0.
34 

0.3
0 

0.1
9  

 
 

Figure 7: Six forest fragmentation conditions 
based on the values for Total Forest Proportion 

and Forest Continuity. (Self Compiled) 
 
 
(and evaluating adjacency in cardinal 
directions), the residual forest is guaranteed to 
occur in identifiable patches when Pf falls below 
a critical value of about 0.4. Below that value, 
the nonforest pixels form a continuous path 
across the window. Conversely, as long as the 
residual forest is above a critical value of about 
0.6, the forest pixels form such a path, and 
forest edges and perforations have more 
meaning. These values are used to define patch 
and transitional categories recognising that they 
are approximate because actual LC pattern is 
not random. 

 
Forest fragmentation also depends on the scale 
of analysis (window size) and various 
consequences of increasing the window size 
are reported in [11]. The measurements are 
also sensitive to pixel size. Higher 
fragmentation occurs when finer grain maps are 
used over a fixed extent (window size). Finer 
grain maps identify more nonforest area where 
forest cover is dominant but not exclusive. The 
strict criterion for interior forest is more difficult 
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to satisfy over larger areas. Although knowledge 
of the feasible parameter space is not critical, 
there are geometric constraints. For example, it 
is not possible to obtain a low value of Pff when 
Pf is large. Percolation theory applies strictly to 
maps resulting from random processes; hence, 
the critical values of Pf (0.4 and 0.6) are only 
approximate and may vary with actual pattern. 
As a practical matter, when Pf > 0.6, nonforest 
types generally appeared as “islands” on a 
forest background, and when Pf < 0.4, forests 
appeared as “islands” on a nonforest 
background.  
 

4.4 Urban Dynamics Characterisation: 
Input data consisted of multi date images 
having three classes: urban, non-urban, and 
water bodies obtained from the supervised 
classification algorithm. Each single date 
fragmentation map consisted of three 
fragmentation classes – interior, perforated and 
patch. The final step in the urban growth model 
was to use two date fragmented image to create 
change map (1973 to 1992, 1992 to 1999, 1999 
to 2000 and 2000 to 2006). The model 
produced urban growth maps, which consisted 
of developed land, non-developed land, water 
and the three types of growth (Infill growth, 
Expansion and Outlying growth) as shown in 
figure 8 and statistics are given in table 8. 
 
Outlying growth have been further classified as 
– isolated, linear branching and clustered 
growth (figure 9). There were no perfect linear 
growth (linear branching surrounded by non- 
developed land). In all the cases, linear 
branching were surrounded by one of the other 
growth classes such as expansion growth, infill 
growth etc. Combining several temporal urban 
growth maps created an informative picture of 
the urban dynamics. Ward wise, impermeable 
areas were plotted against the urban population 
density to understand the increase in population 
density with the increase in the impermeable 
area. Increased paved surface and 
concentrated human activities has led to urban 
heat island effect, as there is increase in 
temperature between urban pixels compared to  

 
Figure 8: Urban growth map (A) 1973 to 1992, (B) 
1992 to 1999, (C) 1999 to 2000, (D) 2000 to 2006. 

(Self Compiled) 
 

 
Figure 9: Types of urban outlying growth 

highlighted in boxes – (A) isolated growth, (B) 
linear branching (road/corridor), (C) clustered 

growth. (Self Compiled) 
 
its surroundings. Visualisation helps the Local 
decision makers to see the implications of 
earlier decisions and policies and evolve 
appropriate LU policies for sustainable planning 
and management. 
 

5. Conclusions 

   
Urbanisation and urban sprawl seems inevitable 
in Indian cities as long as the growth is coupled 
with lack of holistic approaches in governance. 
Sections of the society will continue to cope up 
with skewed economic growth while attempting 
to protect natural resources. 

 
Table 8: Changes in urban growth types from 1973 to 2006 (Self Compiled) 

 

Urban Growth 
Type 

1973 - 1992 1992 - 1999 1999 - 2000 2000 - 2006 

Ha % Ha % Ha % Ha % 

Developed 6889 1.0 3818 5.6 2876 4.2 32380 4.74 

Non-developed 48529 71 44034 64.6 42610 63 37922 55.54 

Water 905 1.3 692 1.0 1434 2.1 952 1.39 

Infill 720 1.1 2146 3.2 3088 4.5 4232 6.20 

Expansion 5720 8.4 10078 14.8 13110 19 16412 24.04 

Outlying 11520 17 7453 10.9 5054 7.4 5526 8.09 

Total 68082 100 68220 100 68172 100 68282 100 
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Visualisation of urban dynamics based on data 
mining and modeling aid in capturing the 
information in an effective way. This would help 
in better planning for provision of basic 
amenities and also to adopt sustainable urban 
strategies. Orthogonal subspace projection 
mapped the impervious surface accurately 
evident from accuracy assessment. Forest 
fragmentation indices and the urban dynamics 
model show the change in type of land cover 
classes from vegetation to urban. Interior forest 
which was present in the city up to 54 % (in 
1973) has come down to 28 % in 2006. Urban 
growth characterised by developed, infill, 
expansion and outlying types evidently illustrate 
the phenomenon of urbanising Greater 
Bangalore.      
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