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Abstract

Rapid urbanisation in India has posed serious challenges to the decision makers in regional planning
involving plethora of issues including provision of basic amenities (like electricity, water, sanitation,
transport, etc.). Urban planning entails an understanding of landscape and urban dynamics with
causal factors. ldentifying, delineating and mapping landscapes on temporal scale provide an
opportunity to monitor the changes, which is important for natural resource management and
sustainable planning activities. Multi-source, multi-sensor, multi-temporal, multi-frequency or multi-
polarization remote sensing data with efficient classification algorithms and pattern recognition
techniques aid in capturing these dynamics. This paper analyses the landscape dynamics of Greater
Bangalore by: (i) characterisation of direct impervious surface, (i) computation of forest fragmentation
indices and (iii) modeling to quantify and categorise urban changes. Linear unmixing is used for
solving the mixed pixel problem of coarse resolution super spectral MODIS data for impervious
surface characterisation. Fragmentation indices were used to classify forests — interior, perforated,
edge, transitional, patch and undetermined. Based on this, urban growth model was developed to
determine the type of urban growth — Infill, Expansion and Outlying growth. This helped in visualising
urban growth poles and consequence of earlier policy decisions that can help in evolving strategies
for effective land use policies.

Keywords: Landscape, orthogonal subspace projection, forest fragmentation, urban growth model
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1. Introduction

Urbanisation is a form of metropolitan growth in
response to incomprehensible combination of
economic, social, and political forces and to the
physical geography of an area. This could be
planned (in the form of townships) or unplanned

(organic). Many organic cities are now
undergoing redevelopment for economic
purposes with new roads, infrastructure

improvements, etc. It results in the increase in
population, in proportion to the region's rural
population. This phenomenona is very rapid in
India with urban population growing at around
2.3 percent per annum. The 21% century is
witnessing "rapid urbanisation of the world’s
population”, as the global proportion of urban
population rose dramatically from 13% (220
million in 1900) to 29% (732 million, in 1950) to
49% (3.2 billion, in 2005) and is projected to rise
to 60% (4.9 billion) by 2030 [1]. An increased
urban population and growth in urban areas is
inadvertent with dramatic increase in population
mainly due to migration. There are 35 urban
agglomerations/cities having a population of
more than one million in India (in 2001). Of the
4000 plus urban agglomerations, about 38
percent reside in just 35 urban areas, thus
indicating the magnitude of urbanisation.
Overall rise in population of urban poor or
increase in travel times owing to congestion in
road networks are indicators of urban
governance and planning. As Indian cities
continue to urbanise, the land use (LU) plays a
determining role in the quality of land, water and
air environment. This pose serious challenges
to the decision makers in the city planning and
management process involving plethora of
issues like infrastructure development, traffic
congestion, and basic amenities (such as
electricity, water, and sanitation), floods, heat
island, loss of aquatic eco-system, carbon
footprint, enhanced level of pollution, higher
instances of diseases, etc. [2]. Thus, the
administration at all levels: local bodies, federal
and national governments are facing the brunt
of rapid urban growth. It is imperative for
planning and governance to facilitate, augment
and service the requisite infrastructure over time
systematically. This requires an understanding
of landscape characterisation focusing on
agents of urban dynamics.

Problem Statement — Identifying, delineating
and mapping landscapes on temporal scale
provide an opportunity to monitor the changes,

which is important for natural resource
management and  sustainable  planning
activities. Multi-source, multi-sensor, multi-

temporal, multi-frequency or multi-polarization

remote sensing (RS) data [3] with pattern
recognition techniques [4] aid in capturing the
dynamics. Pattern classification and modeling
are very useful in landscape characterisation for
addressing the problems of sprawling cities and
urban management. The objectives of this work
are to understand the landscape dynamics in
Greater Bangalore through visualization by i)
modeling impervious surface, ii) computation of
forest fragmentation indices, iii) quantification
and categorisation of urban changes and (iv)
modeling of urban dynamics.

Visuaisation - Current Trend and
Techniques: Geovisualisation helps to
explore real-world environments and model
‘what if scenarios based on spatio-temporal
data. This aids as a tool for modeling the
environmental interests in policy planning.
Some of the well known applications are 3D
photorealistic representations to simulate urban
redevelopment and possible pollution diffusion
over the next few years. Techniques used in
geovisualisation are agent based cellular
automata models, genetic algorithms, etc.

2. Methods

2.1 Orthogonal Subspace Projection
(OSP) — Pixel usually contain contributions
from more than one class, when object size is
smaller than the pixel resolution (mixed pixels)
except in higher spatial resolution data.
Standard classification techniques, which
attribute a single class to the entire pixel, are
therefore inappropriate to low spatial resolution
satellite images from space-borne sensors. This
motivates the development of algorithms which
unmix the coarse spatial data or, in other words,
perform classification at a sub-pixel level. The
main objective is to find out the proportion of
each category in a given pixel, or in other
words, unmix the pixel to identify the categories
present within the pixel. In order to address this
problem, unmixing techniques have been
developed to exploit sub-pixel level information
for image analysis [5], where sub-pixel class
composition is estimated through the use of
techniques, such as linear mixture modeling [6],
supervised fuzzy-c means classification and
artificial neural networks, etc.

Linear unmixing is based on an assumption that
the spectral radiance measured by the sensor
consists of the radiances reflected collectively in
proportion to the sub-pixel area covered by
each material. Let K be the number of spectral
bands in the multispectral / superspectral data
set, and P, the number of distinct classes of
objects in the physical scene. Associated with
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each pixel is a K-dimensional vector y whose
components are the gray values corresponding
to the K bands. Let E = [ey, e,,..., ep], where {e;}
is a column vector representing the spectral
signature of the i" target material or category.
dimensional abundance vector a. Assuming the
linear mixture model, the observation vector y is
related to E by

y=Ea +n 1)

where 7, accounts for the measurement noise.
We further assume that the components of the
noise vector 7 are zero-mean random
variables that are independent and identically
distributed. Therefore, the covariance matrix of
the noise vector is o?l, where o’ is the

variance, and | is K x K identity matrix. The
conventional approach [7] to extract the

abundance values is to minimise ||y-E«||,
and the estimate for the abundance is
a=(E"E)'E'y )
which is termed as the Unconstrained Least

Squares (ULS) estimate of the abundance.
Imposing the sum-to-one constraint on the

abundance values while minimising ||y - E« ||,

gives the Constrained Least Squares (CLS)
estimate of the abundance as,

o= (ETE)'l(ETy-%lj ©)
where,
2(1"(ETE)'E"y-1)
A=
1"(E'E)"1 )

Chang (2005) [8] came up with a technique
called Orthogonal Subspace Projection (OSP)
in the signal processing domain, which is used
here as a classification technique based on two
aspects: 1) how to best utilise the target
knowledge provided a priori and 2) how to
effectively make use of numerous spectral
bands. Briefly, the technique involves (i) finding
an operator which eliminates undesired spectral
signatures, and then (ii) choosing a vector
operator which maximises the signal to noise
ratio (SNR) of the residual spectral signature. In
order to find the abundance of the pth target
material (ap), let the corresponding spectral
signature of the desired target material be
denoted as d. The term Ea in equation (1) can
be rewritten to separate the desired spectral
signature d from the rest as:

Ea =da, +Rr (5)

where r contains the abundance of the rest of
the end-members, and R is a K x P - 1 matrix
containing the columns of E except for the
column vector d. We rewrite (1) as

The column vectors of the K x P matrix E are
called end-members. For a given pixel, the
abundance fraction of the pth target material
present in a pixel is denoted by a,, and these
values are the components of the P-

y =do, +Rr +n. (6)
The interfering signatures present in R can be
removed from (6) by the operator,

P=(- R(RTR)'lRT) @
which is used to project the vector y into a
space orthogonal to the space spanned by the
interfering  spectral signatures.  Therefore,
operating on y with P, and noting that PR = 0,
we get

Py =Pda, +Pn. (8)

The next step is to find an operator w' which
maximizes the SNR given by

_ WPda,) _ wTPdofdPTw) o
WPD)}  wWP{(mm )P"w
_ aj 2WTPddTPTW
c wTPPTw

Maximizing the SNR leads to the generalized

eigenvalue problem: Pdd"PTw= APPTw.

The eigenvector corresponding to the maximum
eigenvalue is the vector ‘w’. It can be shown
that the w which maximises the SNR is given by

w = kd. (20)
Therefore, an optimal estimate of a, is given by
gz Y PPy
P~ TT~ 11
d"P"Pd -

In the absence of noise, the estimate matches
with the exact value as in (6). The value of a is
the abundance of the pth class (in an abundance
map) ranging from 0 to 1 in any given pixel. 0
indicates absence of a particular class and 1
indicates full presence of that class in that
particular pixel. There are as many abundance
maps as the number of classes. Intermediate
values between 0 and 1 may represent a
fraction of that class. If the objective is to map
the impervious surface, then OSP renders an
impervious surface abundance map, where
each abundance pixel shows the proportion of
impervious material (buildings / houses / roads /
paved surfaces, etc.) in that pixel.

2.2 Forest fragmentation — Forest
fragmentation is the process whereby a large,
continuous area of forest is both reduced in
area and divided into two or more fragments.
The decline in the size of the forest and the
increasing isolation between the two remnant
patches of the forest has been the major cause
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of declining biodiversity [9]. The primary
concern is direct loss of forest area, and all
disturbed forests are subject to “edge effects” of
one kind or another. Forest fragmentation is of
additional concern, insofar as the edge effect is
mitigated by the residual spatial pattern [10].

Land cover (LC) map indicate only the location
and type of forest, and further analysis is
needed to quantify the forest fragmentation.
Total extent of forest and its occurrence as
adjacent pixels, fixed-area windows surrounding
each forest pixel is used for calculating type of
fragmentation. The result is stored at the
location of the centre pixel. Thus, a pixel value
in the derived map refers to between-pixel
fragmentation around the corresponding forest
location. As an example [11] if Pf is the
proportion of pixels in the window that are
forested and Pff is the proportion of all adjacent
(cardinal directions only) pixel pairs that include
at least one forest pixel, for which both pixels
are forested then, Pff estimates the conditional
probability that, given a pixel of forest, its
neighbour is also forest. The six fragmentation
model that identifies six fragmentation
categories are: (1) interior, for which Pf = 1.0;
(2), patch, Pf < 0.4; (3) transtitional, 0.4 < Pf <
0.6; (4) edge, Pf > 0.6 and Pf-Pff > 0; (5)
perforated, Pf > 0.6 and Pf-Pff < 0, and (6)
undetermined, Pf > 0.6 and Pf = Pff.

When Pff is larger than Pf, the implication is that
forest is clumped; the probability that an
immediate neighbour is also forest is greater
than the average probability of forest within the
window. Conversely, when Pff is smaller than
Pf, the implication is that whatever is nonforest,
is clumped. The difference (Pf - Pff)
characterizes a gradient from forest clumping
(edge) to nonforest clumping (perforated).
When Pff = Pf, the model cannot distinguish
forest or nonforest clumping. The case of Pf = 1
(interior) represents a completely forested
window for which Pff must be 1.

Forest fragmentation indices [12] have two
parts: (1) Total forest proportion (TFP) and
Forest continuity (FC). TFP provides a basic
assessment of forest cover in a region ranging
from 0 to 1. FC value examines only the
forested areas within the analysis region. Its
measure specifically utilises the results from the

forest fragmentation model.
total forest area
TFP

~ total non — water area (12)

weighted forest area area of largest interior forest patch
= *
total forest area

total forest area

(13)

Weighted values for the weighted forest area
(WFA) are derived from the median Pf value for
each fragmentation class (equation 14):

WFA = (1.0 = interior) + (0.8 * (perforated + edge + undertermined) + (0.5
+ transitiojnal) + (0.2 = patch)
(14)

The rationale is that, given two regions of equal
forest cover, the one with more interior forest
would have a higher weighted area, and thus be
less fragmented. To separate further regions
based on the level of fragmentation, the weight
area ratio is multiplied by the ratio of the largest
interior forest patch to total forest area for the
region. FC ranges from 0 to 1.

2.3 Urban Dynamics Characterisation —
An urban dynamics model has spatially detailed
data with fine spatial grain, examines the whole
landscape and assesses urban growth in all
areas, avoids spatial averaging, maintains
spatial pattern and configuration, and is
consistent over time. The urban growth model
used here is based on the modified forest
fragmentation model developed by Ritters et al.,
(2000) [13]. The urban dynamics model uses
urban and non-urban classes to create
fragmentation image instead of forest and non-
forest in forest fragmentation model. Input data
consist of multi-dates LC with a minimum of
three classes; urban (developed), non-urban
(non-developed), and water. Instead of using a
forest versus non-forest binary image to create
a forest fragmentation map, the first step of the
urban growth model uses a non-developed
versus developed image to create a “non-
developed” fragmentation image. The single
date fragmentation map consist of three
“fragmented” classes that are combination of
the five classes previously described (interior,
patch, transitional, edge and perforated). The
first is interior, which occurs when all pixels in a
3 x 3 window are non-developed. The second
class is perforated, which occurs when between
60 % and less than 100 % of pixels ina 3 x 3
window are non-developed. The final class is
patch, which occurs when fewer than 60 % of
pixels in a 3 x 3 window are non-developed.
Two dates of fragmentation maps are used to
create change map. There are three types of
change classes — the first type consists of no
change classes (including developed, water and
interior), the second type includes improbable
changes, likely due to classification error, and
the third type consists of classes that represent
urban growth. The classes that indicate urban
growth are outlined in table 1 along with their
corresponding urban growth classes. The
change classes determine the type of urban
growth. Infill is the development of a small area
surrounded by existing developed land.
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Expansion is the spreading out of urban LC
from existing developed land. Outlying growth is
an interior pixel that changes to developed, and
is further classified as either isolated, linear
branching, or clustered branching (see table 1).

Table 1: Change classes that represent urban
growth and the corresponding growth types [13]

Significant Type of Growth
Change Classes
Patch to | Infill Growth
Developed
Perforated to | Expansion Growth
Developed
Interior to | Outlying Growth:
Developed 1. lIsolated Growth,
2. Linear Branching Growth,
3. Clustered Branching Growth

Their distinction is made using a set of rules. An
isolated growth is defined as a new, small area
of construction surrounded by non-urban land
and some distance from other developed areas.
A linear branching growth is a road, corridor, or
linear development surrounded by non-urban
land and some distance from other urban areas.
A clustered branching growth is indicative of a
new, large and dense development in a
previously undeveloped area. The urban growth
model produces an urban growth map, which
consists of five types of growth as well as
developed land, water, and non-developed land.

3. Study area and Data

Greater Bangalore is the principal
administrative, cultural, commercial, industrial,
and knowledge capital of the state of Karnataka
with an area of 741 square kilometers (sg. km)
and lies between the latitudes 12°39°00” to
131°3'00°"N and longitude 77°22°00” to
77°52’00”E (figure 1). Bangalore has grown
spatially more than ten times (741 sq. km) since
1949 (69 sg. km.) and is the fifth largest
metropolis in India currently with a population of
about 7 million. The mean annual total rainfall is
about 880 mm with about 60 rainy days a year
over the last ten years. The summer
temperature ranges from 18° C — 38° C, while
the winter temperature ranges from 12° C — 25°
C. Thus, Bangalore enjoys a salubrious climate
all round the year. Survey of India (SOI)
toposheets of 1:50000 and 1:250000 scales
were used to generate base layers of the city
boundary and water bodies. Field data for
ground control points (GCPs) and training sites
for supervised classification of RS data were
collected with a handheld GPS. RS data used
are

e Landsat MSS of 1973, TM of 1992, ETM+
of 2000 [downloaded from
http://glcf.umiacs.umd.edu/data/]

GREATER 3
BANGALORE f

Wiometres.

Figure 1: Study area — Greater Bangalore, India.
(Self Compiled)

e |RS (Indian Remote Sensing) LISS (Linear
Imaging Self Scanner)-1ll of 1999 and 2006
[procured from NRSA, Hyderabad, India]

e MODIS of 2006, 2007 (Moderate Resolution
Imaging Spectroradiometer) Surface
Reflectance 7 bands product [downloaded
from http://edcdaac.usgs.gov/main.asp]

e Google Earth data (http://earth.google.com)
served in pre and post classification
process and validation of the results.

4. Results and discussions

4.1 Classification of IRS LISS-Ill (2006)
data: IRS LISS-III data acquired on 28" March,
2006 having 3 spectral bands (Green, Red and
NIR) with 23.5 m spatial resolution were
georegistered with  known GCPs and
geometrically corrected and resampled to 25 m
(1360 x 1400 pixels) which helped in pixel level
comparison of abundance maps obtained by
unmixing MODIS data (of 2006) with LISS-III
classified map. The class spectral
characteristics for four LC categories
(buildings/urban, vegetation, water bodies and
others) using LISS-lIl MSS bands 2, 3 and 4
were obtained from the training pixels spectra to
assess their inter-class separability and the
images were classified using Gaussian
Maximum Likelihood classifier with training data
uniformly distributed over the study area
collected with pre calibrated GPS (figure 2).
This was validated with the representative field
data (training sets collected covering the entire
city and validation covering ~ 10% of the study
area) and also using Google Earth image
(http://www.earth.google.com). LC statistics,
producer's accuracy, user's accuracy and
overall accuracy computed are listed in table 2.
The urban pixels were extracted from the

Symbiosis Centre for Information Technology SCIT Journal (ISSN 0974-5076) Volume IX, August 2009 5



I Builtup
B Vegetation
I Vater Bodies

Others

Figure 2: LC classification using LISS-IIl MSS
(2006). (Self Compiled)

Table 2: LC details using LISS -1ll MSS (Self

Compiled

Class Area | Area | P* u* O*

Ha) | (%) | () | (%) | (%)
Builtup 29535 | 43.2 | 85.2 | 845
Vegetation | 19696 | 28.8 | 83.5 | 88.1 | 84.6
Water 1073 | 01.6 | 90.7 | 80.2
bodies
Others 18017 | 26.4 | 78.3 | 77.7

P* - Producer’s Accuracy, U* - User’s Accuracy,
O* - Overall Accuracy

classified image and were used as a benchmark
to validate the output obtained from OSP.

4.2 Unmixing of MODIS data using
OSP: MODIS data (of 2006) having 7 bands
with band 1 and 2 at 250 m and band 3 to 7 at
500 m spatial resolution were georegistered
with GCPs, geometrically corrected and bands
3 to 7 were resampled to 250 m (136 x 140
pixels) so that all 7 bands are at same spatial
resolution. Unmixing of MODIS data (250 m)
were done to obtain abundance map of the
impervious surface. Visual inspection as well as
accuracy assessment of abundance image
showed that OSP algorithm maps impervious
surface spatially and proportionally similar to
supervised classified image of LISS-IlI (of
2006). The proportions of urban pixels in the
image (figure 3) range from 0 to 1, with O
indicating absence and increasing value
showing higher abundance.

Accuracy assessment at pixel level: A pixel
of MODIS (250 m) corresponds to a kernel of 10
x 10 pixels of LISS-IIl spatially (resampled to 25
m). The builtup abundance map was validated
pixel by pixel with the LISS-III builtup map. The
proportion of builtup percentage obtained in
these 136 x 140 cells were compared using
three measures of performance — Root Mean
Square (RMS) error (0.160), Bivariate
Distribution Functions (BDFs) between LISS-III

|1 Full presence

0 Absence

Figure 3: LC abundance maps (of 2006) for
builtup, vegetation, water bodies and others. (Self
Compiled)

classified (real proportion) and MODIS based
abundance map (predicted proportions), and
Wilcoxon signed rank test. The bivariate plot
(figure 4) was helpful in visualising the accuracy
of prediction by mixture models. While most of
the points fall between the two 20 % difference
lines, some points are outside the lines
indicating that there could be higher or lower
estimation than the actual values. The
Pearson's product-moment correlation was 0.84
(p-value < 2.2e™*°). 10 % of the difference pixels
between the LISS-III proportion and the MODIS
abundance were randomly selected at the same
spatial locations in the two images by random
number generation. These difference data
values failed when subjected to normality test
(table 3).

1

09

Predicted proportion

0 Eeondleieonih looo—L
0 01 02 03 04 05 06 07 08 09 1
Real Proportion

Figure 4: BDF of LISS-Ill classified and MODIS
based abundance map. (Self Compiled)

Table 3: Normality tests for the difference in LISS-
Il and MODIS proportions (Self Compiled)

Normality test p-value
Shapiro-Wilk 2.2e7°
Anderson-Darling 2.2¢"°
Kolmogorov-Smirnov 2.2e"°
Cramer-von Mises Infinity
Lilliefors 2.2e"°
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The data points corresponding to builtup
proportion in a MODIS pixel and corresponding
LISS-IIl pixels were then subjected to box-plot
and histogram analysis. The distribution was
symmetrical, hence Wilcoxon signed rank test
with continuity correction was performed (r =
0.66, p-value < 2.2e™°), which showed less
evidence against null hypothesis — “true location
of median of the difference between two data
sets is equal to 0”.

The abundance image was further analysed
with a minimum detectable threshold of 10 %
and in increments of 10 % (i.e., 20 to 30 %, 30-
40 %, ...., 90 to 100 %) as shown in figure 5.
Objects  representing different  brightness
classes of impervious surface are typically
selected to be mapped based on the tonal
variations in the builtup landscape, which
constitute spectral classes. The results hold
great promise for improved accessibility and
accuracy of this important urban indictor at the
local and city level. Table 4 depicts the
percentage impervious surface from abundance
map.

-90 %

-100 %

Figure 5: Percent impervious surface layer for the
Bangalore city. (Self Compiled)

4.3 Forest fragmentation indices:
Supervised classification was performed on
temporal datasets for Bangalore city with the
Bayesian classifier using the open source
programs (i.gensig, i.class and i.maxlik) of
Geographic Resources Analysis  Support
System (http://wgbis.ces.iisc.ernet.in/grass).
Accuracy assessment was done using field
knowledge, and visual interpretation which
showed an overall accuracy of 72 %, 75 %, 71
%, 77 % 85 % and 55 % for the year 1973,
1992, 1999, 2000, 2006 and 2007. The class
statistics is given in table 5. From the classified
raster data, urban class was extracted and
converted to vector representation for
computation of precise area in hectares
indicating 466 % increase in built up area from
1973 to 2007 as evident from temporal analysis

Table 4: Percent Impervious surface from
abundance map (Self Compiled)

Percent Area
Impervious Ha %
surface
0-10% 7019.57 9.97
11-20% 5853.89 8.31
21-30% 7410.17 10.52
31-40% 10126.27 14.38
41-50 % 10199.57 14.48
51-60% 9149.63 12.99
61-70% 9863.94 14.01
71-80% 7050.32 10.01
81-90% 3485.47 4.95
91-100% 274.69 0.39

leading to a sharp decline of 61% area in water
bodies mostly attributing to intense urbanisation
process. Rapid urbanisation and sprawl has
many detrimental effects including the loss of
valuable agricultural and eco-sensitive (e.g.
wetlands, forests) lands, enhanced energy
consumption and greenhouse gas emissions
from increasing private vehicle use and also
from modern glazed architectures. Vegetation
has decreased by 63 % from 1973 to 2007.
Using the results from classification, forest
fragmentation indices were computed as shown
in figure 6 and the statistics are presented in
table 6.

Table 5: Greater Bangalore land cover statistics
(Self Compiled)

Class > Built | Vegetation | Water | Others
Year ¥ up Bodies
1973 | Ha | 5448 46639 2324 13903
% 7.97 68.27 3.40 20.35
1992 | Ha | 18650 31579 1790 16303
% 27.30 46.22 2.60 23.86
1999 | Ha | 23532 31421 1574 11794
% | 34.44 45.99 2.30 17.26
2000 | Ha | 24163 31272 1542 11346
% | 35.37 45.77 2.26 16.61
2006 | Ha | 29535 19696 1073 18017
% | 43.23 28.83 1.57 26.37
2007 | Ha | 30876 17298 1005 19143
% | 45.19 25.32 1.47 28.01

Applying forest fragmentation indices to a time
series LC data provided a quantitative
assessment of the pattern of forest
fragmentation at each date and a means for
tracking trends in forest fragmentation. Patch
forest which was only 2.45 % in 1973 has
increased up to 9.6 % in 2006 and interior forest
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Table 6: Composition of forest fragmentation (Self Compiled)

Fragmentation 1973 1992 1999 2000 2006

Categories Ha % Ha % Ha % Ha % Ha %
Patch 1120 2.45 1950 6.34 | 1788.6 | 5.91 1944 6.47 1810 | 9.57
Transitional 3789 8.28 4259 13.84 | 3816 | 12.62 | 3999 | 13.31 | 3956 | 20.92
Edge 14717 | 32.16 | 10709 | 34.81 | 9516 | 31.46 | 10593 | 35.25 | 6050 | 31.99
Perforated 1453 3.18 1447 4.70 1410 4.66 1219 4.06 1859 | 9.83
Interior 24675 | 53.93 | 12401 | 40.31 | 13715 | 45.35 | 12291 | 40.91 | 5236 | 27.69
Total 45756 100 30766 100 30244 100 30047 100 18909 | 100

1992

2006
B Patch

M Transitional
g 5 ke _| Edge
. L B Perforated
5 ’ I interior

Figuré 6: Forest fragmentation map (1972, 1992,
1999, 2000 and 2006). (Self Compiled)

has decreased from 54 % in 1972 to 27.7 % in
2006.

Using forest fragmentation indices, the state of
the fragmentation for the city was developed.
While the forest fragmentation map produced
valuable information, it was difficult to visualise
the state of forest fragmentation for tracking the
trends and to identify the areas where forest
restoration might prove appropriate to reduce
the impact of deforestation. The values of TFP
and FC calculated (table 7) for the temporal
data were plotted on a graph that specifies six
conditions of forest fragmentation in figure 7.
The TFP designations revealed that forest
fragmentation become more severe as forest
cover decreases from 100 percent cover
towards 80 percent. Between 60 and 80 percent
forest cover, the opportunity for re-introduction
of forest to connect forest patches is greatest,
and below 60 percent, forest patches become
small and more fragmented. The FC regions
were evenly split and designated high forest
continuity (above 0.5) or low forest continuity
(below 0.5). The amount of forest and continuity
were high in 1973 and decreased substantially
in 2006 (figure 6). Forest edges and
perforations have less meaning where the
amount of forest is low and percolation theory
[14] identifies two critical values of Pf. In a
completely forested landscape, for a completely
random forest conversion on an infinite grid

Table 7: Total forest proportion and forest
continuity (Self Compiled)

State of forest | 19 | 19 | 19 | 20 | 20
fragmentation | 73 | 92 | 99 | 00 | 06

index
TFP 07 10. |0. |04 ]0.2
FC 04 0. |]0. |03 ]01

1.0 igh amount of forest

i High forest continuity

High amount of forest
Low forest continuity

Moderate amount of forest
JLLL High forest continuity

Moderate amount of forest
Low forest continuity

Low amount of forest
High forest continuity

Forest Continuity
o
L]

ow amount of forest
# Low forest continuity

B :
Total Forest Proportion

01973 [1992 O1909  A2000 (2008
Figure 7: Six forest fragmentation conditions
based on the values for Total Forest Proportion

and Forest Continuity. (Self Compiled)

(and evaluating adjacency in cardinal
directions), the residual forest is guaranteed to
occur in identifiable patches when Pf falls below
a critical value of about 0.4. Below that value,
the nonforest pixels form a continuous path
across the window. Conversely, as long as the
residual forest is above a critical value of about
0.6, the forest pixels form such a path, and
forest edges and perforations have more
meaning. These values are used to define patch
and transitional categories recognising that they
are approximate because actual LC pattern is
not random.

Forest fragmentation also depends on the scale
of analysis (window size) and various
consequences of increasing the window size
are reported in [11]. The measurements are
also sensitive to pixel size. Higher
fragmentation occurs when finer grain maps are
used over a fixed extent (window size). Finer
grain maps identify more nonforest area where
forest cover is dominant but not exclusive. The
strict criterion for interior forest is more difficult
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to satisfy over larger areas. Although knowledge
of the feasible parameter space is not critical,
there are geometric constraints. For example, it
is not possible to obtain a low value of Pff when
Pf is large. Percolation theory applies strictly to
maps resulting from random processes; hence,
the critical values of Pf (0.4 and 0.6) are only
approximate and may vary with actual pattern.
As a practical matter, when Pf > 0.6, nonforest
types generally appeared as “islands” on a
forest background, and when Pf < 0.4, forests
appeared as “islands” on a nonforest
background.

4.4 Urban Dynamics Characterisation:
Input data consisted of multi date images
having three classes: urban, non-urban, and
water bodies obtained from the supervised
classification algorithm. Each single date
fragmentation map consisted of three
fragmentation classes — interior, perforated and
patch. The final step in the urban growth model
was to use two date fragmented image to create
change map (1973 to 1992, 1992 to 1999, 1999
to 2000 and 2000 to 2006). The model
produced urban growth maps, which consisted
of developed land, non-developed land, water
and the three types of growth (Infill growth,
Expansion and Outlying growth) as shown in
figure 8 and statistics are given in table 8.

Outlying growth have been further classified as
— isolated, linear branching and clustered
growth (figure 9). There were no perfect linear
growth (linear branching surrounded by non-
developed land). In all the cases, linear
branching were surrounded by one of the other
growth classes such as expansion growth, infill
growth etc. Combining several temporal urban
growth maps created an informative picture of
the urban dynamics. Ward wise, impermeable
areas were plotted against the urban population
density to understand the increase in population
density with the increase in the impermeable
area. Increased paved surface and
concentrated human activities has led to urban
heat island effect, as there is increase in
temperature between urban pixels compared to

[ ] Developed

- Non-developed
-Wa(er
I it growth
[:]Expansion growth
- Outlying growth
Figure 8: Urban growth map (A) 1973 to 1992, (B)
1992 to 1999, (C) 1999 to 2000, (D) 2000 to 2006.
(Self Compiled)

5

Figure 9:Tpes of urbein o-utlying growth
highlighted in boxes — (A) isolated growth, (B)
linear branching (road/corridor), (C) clustered

growth. (Self Compiled)

its surroundings. Visualisation helps the Local
decision makers to see the implications of
earlier decisions and policies and evolve
appropriate LU policies for sustainable planning
and management.

5. Conclusions

Urbanisation and urban sprawl seems inevitable
in Indian cities as long as the growth is coupled
with lack of holistic approaches in governance.
Sections of the society will continue to cope up
with skewed economic growth while attempting
to protect natural resources.

Table 8: Changes in urban growth types from 1973 to 2006 (Self Compiled)

Urban Growth 1973 - 1992 1992 - 1999 1999 - 2000 2000 - 2006

Type Ha % Ha % Ha % Ha %
Developed 6889 1.0 3818 5.6 2876 4.2 32380 4.74
Non-developed 48529 71 44034 64.6 42610 63 37922 55.54
Water 905 1.3 692 1.0 1434 2.1 952 1.39
Infill 720 11 2146 3.2 3088 45 4232 6.20
Expansion 5720 8.4 10078 14.8 13110 19 16412 24.04
Outlying 11520 17 7453 10.9 5054 7.4 5526 8.09
Total 68082 100 | 68220 100 68172 100 68282 100
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Visualisation of urban dynamics based on data
mining and modeling aid in capturing the
information in an effective way. This would help
in better planning for provision of basic
amenities and also to adopt sustainable urban
strategies. Orthogonal subspace projection
mapped the impervious surface accurately
evident from accuracy assessment. Forest
fragmentation indices and the urban dynamics
model show the change in type of land cover
classes from vegetation to urban. Interior forest
which was present in the city up to 54 % (in
1973) has come down to 28 % in 2006. Urban
growth characterised by developed, infill,
expansion and outlying types evidently illustrate
the phenomenon of urbanising Greater
Bangalore.
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