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1. Abstract

With the objective of studying the atrazine transport using all the available soil attributes as input
for a model and to predict the risk of groundwater pollution within a region which contributes to
the Great Lakes, two study areas were selected for Southern Ontario: the Grand River
Watershed at 1:1,000,000. The polygon information was obtained from the National Soil Data
Base (NSDB). Using the soil codes and modifiers as a key, the soil attributes needed were
extracted from the Soil Layer Files (SLF), for three layers. From the 119 polygons within the
window, many attributes were missing, for which values were estimated using pedotransfer
functions available from the literature. The pedotransfer functions were tested against field
measured data and their performance was evaluated through the value of the linear correlation
coefficient. The assessment of groundwater contamination with atrazine was done through the
calculation of the annual mass loading and the time necessary for it to reach 3 ppb at 90 cm
depth, through a water and solute transport model called LEACHM. The input data for the
LEACHM model requires that for each soil profile data set a corresponding set of climatological
attributes should be provided. For that purpose, the climatological data corresponding to the
station closest to each soil profile was extracted and used for that soil unit. The expansion from
point data to regions was done through geostatistical analysis, under the assumption that there
is a continuous variation in soil properties from one point to its neighbour, as indicated by spatial
autocorrelation between neighbouring observations. This assumption was verified through
examination of the semivariograms for the attributes under investigation. Kriging was then used
to estimate 1467 values on a fine regular grid of 2km by 2km for the watershed. The contour
maps generated with the values estimated by kriging were input in the GIS and the rasterized
maps were reclassified and colour printed with respective legends. The loadings of atrazine to
the groundwater were limited by the soil attributes where there are heavy textured soils,
whereas the climate attributes showed more influence on the loadings for the soils with higher
hydraulic conductivities. Maize crop cultivation and the use of agrochemicals on high hydraulic
conductivity soils should be restricted because virtually all of the unused chemical passes
through in less than one year.
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2. Introduction

The use of pesticides in Ontario has increased substantially in recent years. In the Great Lakes
basin, between 1978 and 1983, the total amount of pesticides used for agricultural purposes
increased from 6,123,680 kilograms to 8,391,010 kilograms, which represents a 35 percent
increase in 5 years (McGee, 1983).

As the use of pesticide in agriculture increased in time, so did the concern over its presence in
surface and ground water systems. Agriculture appears to be a major source of pesticides in the
Great Lakes basin. Research to understand better the pathways and processes involving
pesticides is needed to minimize their adverse impact on the biota.

This study is concerned with developing the capability to use the available data from soil
databases for modeling water and solute transport through soil profiles. By extending the
modeling from a profile to landscapes it is possible to assess the soil potential for preventing or
contributing to pollution of ground water resources by the downward percolation of
agrochemicals (e.g. nutrients, pesticides). Such a capability would be of great assistance to
scientists, planners and policy makers in the development of soil quality inventories of "pollution
potential", and in the development of agricultural land use practices and guidelines that maintain
agrochemical inputs to the ground water at acceptable and sustainable levels.

An increasing awareness of the need for careful management of land use and land
development has grown over the last decade, in particular, with respect to environmentally
related sensitivity. Agriculture has especially received a considerable attention in this respect.
Although, in general, pesticide residues above minimum detection limits in ground water are
found in fewer cases than are nitrate and coliform bacteria (Agriculture Canada, 1992), it is still
an important problem. Many studies related to ground water quality have been conducted in
southern Ontario. Millette and Torreiter (1992), on a review of ground water contamination for
the Great Lakes basin report levels of residues, primarily atrazine and metolachlor, ranging from
0.2 to 34 mg/L. Frank et al. (1987) report that between 1969 and 1984, in 596 wells examined in
Ontario, 293 (49.2%) had pesticide concentrations above the minimum detection limit,
constituted mostly by atrazine and 2,4-D. In order to prevent soil erosion, the use of no-tillage or
minimum tillage systems has increased drastically in the last years, and it is estimated, for
instance, that, by the year 2000, 60 to 70% of all cropland in the United States will be farmed
according to some conservation tillage system (USDA-ARS, 1988). Most of the conservation
tillage systems require the use of herbicides in their weed control programs because, often, no
mechanical control is used to avoid mixing and revolving the soil. Sadeghi and Isensee (1992)
found higher atrazine residues on conventional tillage than in no tillage plots. Therefore, it is
expected that, if the pesticide could infiltrate into the soil immediately after it was applied, i.e.,
high soil infiltration rate, and the longest it could persist within the soil the better for its
degradation. Temperature, soil moisture and soil characteristics play an important role on the
persistence of pesticides. Walker et al. (1992) found the degradation rate of alachlor to be
positively correlated with microbial biomass and microbial respiration, and adsorption positively
correlated with soil organic matter content. They also found the persistence of alachlor in the
field plots to be weather dependent.

The variability in pesticide concentration and fluxes within large fields is dependent both on the
variability of the soil properties and on soil management practices (Trangmar et al. 1985).
Millette et al. (1992) found the surface topography to have a major effect on the spatial
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distribution of atrazine, cyanazine and metolachlor even three to four years after their last
application.

Spatial prediction precision depends greatly on the amount of information available and on the
correlation between neighbouring observations and it has been quit extensively reported (Vieira
et al. 1983, Trangmar et al., 1985, Beek et al. 1992, McBratney et al. 1992, Heuvelink and
Bierkens, 1992)

Within this study methodologies have been adopted for characterizing and predicting the
downward migration of the widely used herbicide, atrazine. Spatial and temporal variability in
the atrazine migration is being accounted for via the combined use of a solute transport model,
pedotransfer functions, geostatistical analyses, and a geographical information system.

3. Background

Although most pesticide contamination of ground water is below current Canadian drinking
water guidelines, there are growing public concerns over potential health hazards related to long
- term exposure to low levels of pesticides and their metabolites. Pesticide residues, especially
atrazine, have been detected in surface, ground and tile drainage waters of many agricultural
watersheds, particularly where there is some combination of high pesticide usage, intensive
agriculture, high rainfall, irrigation, coarse and other highly permeable soils, high water tables,
and sloping topography.

Pesticide contamination of ground water has traditionally been considered to be due primarily to
spills, and to improper practices for storage, disposal and application. There is increasing
evidence, however, that normal agricultural practices can also result in low - level, non - point
source contamination of ground water via the downward migration of pesticides through the soil
profile. There is consequently a need to determine how important and widespread this type of
contamination might be, what the controlling soil quality, land use and environmental factors
are, and what agricultural practices are required to limit this type of pollution to acceptable
levels.

Essential steps in obtaining the above information include, identification of the primary
mechanisms controlling pesticide movement through the soil profile, and development of the
capability to characterize and predict the pesticide movement in space and time with acceptable
accuracy. The approach being taken to achieve these steps is to employ a sophisticated solute
transport simulation model in combination with pedotransfer functions, geostatistical analyses
and a geographical information system (GIS). The solute transport model, which is an in house
modification of a well established and tested modeling package called LEACHM (Hutson and
Wagenet, 1989), integrates the major processes that occur in the soil profile, including: soil
horizonation; saturated, unsaturated, steady and transient water flow; crop growth and
transpiration; solute (e.g. atrazine) sorption, degradation, advection and dispersion; precipitation
and evaporation; soil heat flow; and water table elevation. The pedotransfer functions are used
to estimate, from available soil data, the soil attributes that are required as input to the solute
transport model (e.g. hydraulic conductivity function, soil water characteristic). The geostatistical
analyses are used to extend the model predictions of solute percolation behaviour from a point
basis (the model is one -dimensional) to an aerial basis (e.g. farmer's field, watershed,
landscape), using procedures that take into account the inherent spatial variability of the area.
The GIS is used to create maps of the geostatistically extended solute percolation behaviour,
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and to overlay these maps with those of soil attributes, land management practices, cropping
practices, weather, etc. Such maps and overlays are the "end product" which can be used to
show the importance and distribution of ground water contamination by downward percolating
pesticides; to determine the major soil, land use and environmental factors controlling the
contamination; and to estimate the potential environmental impact of changes in land
management practices.

Specifically, the objectives of this study are:
i) To develop an appropriate numerical estimation procedure for deriving from the Canadian
National Soil Data Base (NSDB) and Archived Weather Data Base (AWDB) the soil, hydrologic
and climatic parameters that control the water and solute movement in soil, and which can meet
the requirements for modeling these processes;
ii) To incorporate the derived parameters of objective 1, the adopted modeling approaches, and
other related data available from the NSDB into a geographic information system (GIS) to
assess the risk of ground water contamination in selected Canadian agricultural landscapes;
iii) To assess and quantify the level of uncertainty associated with the risk assessments
developed under objective 2.

4. Material and Methods

4.1 Criteria for Selection of the Study Areas and Working Scales

The basic criteria for choosing the study area required that:
• the basic land use had to be agricultural;
• there should be a reasonable range of soil texture;
• the region should use pesticides in their crops;
• there should be data available.

All of the first three conditions above are well documented in the literature for the Grand River
watershed (Shelton at al., 1988). As far as the availability of data, the possible sources where
the detailed soil survey for small areas or the Soil Landscapes of Canada database, and the
Soil Carbon database for larger areas.

Throughout this study, the depth of the water table was considered constant at 90cm based on
the depth of tile drains for southern Ontario.

4.2 Grand River Watershed

The Grand River is located in Southern Ontario and runs mostly southward towards Lake Erie.
An arbitrary window encompassing the entire watershed was marked on a Southern Ontario
map to eliminate border effects on the statistical calculations. A total of 119 polygons from the
Soil Landscapes of Canada exist within the window. These polygons are identified with a unique
number which is associated with its Soil Landscape unit through the soil code and modifier as a
key to relate with other databases, such as the Soil Layer File (SLF), in order to extract soil
attributes. Some polygon numbers are repeated within the window because they are pieces of a
big unique polygon which was split in smaller pieces by the arbitrary line used as the limit of the
window.. A total of 3 layers of data, corresponding approximately to the horizons A, B and C of
the dominant soils, were obtained. Because the data base does not have any information as to
where the subdominant soils are located within the polygon, only the dominant soils were used,
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as if they covered the entire polygon. For a few polygons, it was possible to obtain a fourth layer
of data. However, because these layers corresponded to depths beyond the interest of this
study, and because it was available only for a few soils, they were not used. From the 119
polygons within the window, there were 77 with textural components data, 46 with bulk density
and soil desorption data, and 11 with saturated hydraulic conductivity. The missing values for
soil texture and for soil organic carbon data in the Soil Layer File were obtained from the Soil
Carbon of Canada (SCC) database, and the remaining attributes were estimated using
pedotransfer functions. Most of the pedotransfer functions need the textural components and
the organic carbon content as input to estimate soil attributes. For this reason, it was important
to obtain these attributes for all polygons. A data set containing soil attributes for 119 polygons
was passed on to other collaborators in this study to run LEACHM. The soil attributes were:
Upper and Lower depths (cm), Sand (%), Silt (%), Clay (%), Bulk Density (g.cm-3), Organic
Carbon (%), Saturated Hydraulic Conductivity - Ksat (cm.d-1), and the Soil Desorption curve
parameters.

In the Archived Weather Data Base (AWDB) there are 510 stations for southern Ontario, from
which, 82 are inside the window. These data were extracted with respective latitude and
longitude co-ordinates, which were used to obtain the X-Y co-ordinates in kilometers on the
same projection as the soil polygons. The data extracted include the monthly normals (1950-
1980) of maximum and minimum temperatures, the daily precipitation and days with
precipitation. Using the X-Y co-ordinates of the centroid of the 119 polygons, the nearest
weather station was selected to be used as the source of climatic attributes to run LEACHM,
and a list containing their names and respective numbers was given our collaborators to run the
model. Using these normals as a source, a standard computing procedure was follow to obtain
daily climatic attributes.

The LEACHM model was run for 10 consecutive years, assuming that, for every year, corn was
planted over the entire area in early may, and the recommended amount of atrazine was
applied at the recommended time. The annual mass loading of atrazine (mg.m-2) and the
elapsed time for it to reach 3 parts per billion at 90 cm depth, were the parameters chosen to
measure groundwater contamination. The 90 cm depth value was chosen based on the average
tile drain depth. The threshold value of 3 ppb for atrazine is the recommended drinking water
level by the United States Environmental Protection Agency (USEPA, 1989).

The mean elevation above the sea level of the watershed region ranges from 50 to 120 meters.
An earlier study on the use of pesticides in agriculture shows high pesticide application rates
over the area chosen (Shelton et al., 1988). This same study shows that around 75% of the land
is used for field crops over the watershed region.

4.3 Pedotransfer functions

Indirect estimation of soil hydraulic properties from basic soil properties has received
considerable attention in the literature (van Genuchten et al., 1992). In order to better monitor
and manage the migration of agricultural chemicals in the subsurface, scientists have developed
increasingly complex computer models describing how water and solutes move in the
unsaturated zone. Application of computer models to field scale transport problems requires a
large number of model parameters, especially soil hydraulic properties. Thus, there is a growing
need for more efficient and accurate methods to estimate the relevant model parameters,
especially in situations in which, only basic soil properties such as textural components and soil
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organic carbon are available. Pedotransfer functions are essentially empirical relationships that
estimate required, but unavailable (i.e. not measured), soil properties from the soil properties
that are available. These functions, the forms of which have been established in the scientific
literature, are calibrated for a particular study area by least squares fitting to a subset of
"available" (i.e. directly measured) soil data. The functions are then used to estimate the
required data where these data have not been measured. Extensive testing of pedotransfer
functions for estimation of soil hydraulic properties can be found elsewhere in the literature
(Vereecken et al., 1992, Vereecken, 1992, Wosten and Bouma, 1992). The goodness of fit of
pedotransfer functions are usually evaluated using the coefficient of determination (Vereecken
et al., 1992), and the higher its value, the better the predictive capacity of the equations.

Another important factor in testing pedotransfer functions is the availability of a reliable set of
measured values. In this study, the measured data sets used contains a large variety of soils
from southern Ontario provided by Topp (1993) (Topp, G.C. 1993. Personal communication),
with some of it described in De Jong et al., (1992). Table 3 shows some general descriptive
information about the measured data set.

Throughout this study, the pedotransfer functions were used only for the missing points, i.e.,
whenever there was a value in the data base it was used, regardless whether it was measured
or estimated by an expert.

Potential evapotranspiration is an important parameter for any soil water balance and also for
the processes involved in the LEACHM simulation model. Because these measurements are
not available, estimation was made using Baier & Robertson (1965). Although this is a widely
accepted model, unfortunately there was no measured data to verify its goodness. The model
equation is:

Q0.0486+)T-T0.933(+T0.928+-87.03=L.E. ominmaxmax

)0.094(L.E.=P.E. (1)

where L.E. is the latent evaporation, P.E. is the potential evapotranspiration (mm), Tmax and Tmin

are the daily maximum and minimum air temperatures, respectively, and Qo is the daily solar
energy at the top of the atmosphere obtained from tables based on latitude and longitude
values. The values of Tmax and Tmin used were the 30 year normals (1950-1980) for every
month, which were then submitted to simple computing routine to generate daily values.

The soil bulk density was only available in the data base for 46 out of 119 polygons. Therefore,
for 73 polygons this property had to be estimated somehow. Three pedotransfer functions were
used and compared, namely, Gupta and Larson (1979a), Rawls (1983) and a stepwise multiple
regression method. The method suggested by Gupta and Larson (1979a) showed the highest
correlation coefficient with the measured values and for this reason it was used for the
estimation of the missing 73 values. This method does not have one simple equation and it
simulates 30 random packings of the particle size fractions given as input, and the average of
these 30 packings is used. The program inputs are: the number of fractions of particle size with
respective bulk densities, the percentual amount of each fraction, and the percent organic
carbon content. The number 30 is the program default, but if desired, the user can specify other
number.



7

From the 119 polygons, only 11 had values for the saturated hydraulic conductivity in the data
base. The pedotransfer functions tested for the estimation of this attribute were: Saxton et al.
(1986), Rawls et al. (1982), Cosby et al. (1984) and Jabro (1992). None of these methods were
exceptionally good. Keeping the same criteria of the best correlation coefficient the model by
Jabro (1992) was chosen for the estimations through the equation

 4.64(Bd)-(%clay)1.09-(%silt)0.81-9.56=)K( s logloglog (2)

Where Ks is the saturated hydraulic conductivity (cm h-1), and Bd is the soil bulk density (g cm3).

As it was discussed earlier, the data base has only 4 soil desorption curve points (KP0, KP10,
KP33, and KP1500), for which there were 46 out of 119 available. First of all, this number of
points in the curve is far too few for a good estimation of the desorption curve equation, which is
required for the LEACHM model. A reasonable number of points in the curve is 10-12, which
were estimated using the pedotransfer functions described by: Saxton et al. (1986), Cosby et al.
(1984), McBride and Macintosh (1984), Rawls and Brakensiek (1982) and Gupta and Larson
(1979b). The results showed that the McBride & Macintosh (1984) is clearly much better than
the others.

 )(+)](-[= 10i10mi10m10 ψαψαθθ loglogloglog (3)

The basic equation for computing soil water content at specified pressure values is
where -ψi is the pressure potential at the primary inflection (kPa), -ψ is the pressure potential for
which θm is to be predicted (kPa), θmi is the gravimetric moisture content at the primary inflection

(% g g-1), θm1.5 is the gravimetric moisture content at the pressure potential of -1.5 MPa (% g g-

1), θm is the predicted gravimetric moisture content at a pressure potential of - ψ (% g g-1) and a
is the slope = (log10θm1.5 - log10θmi)/(3.176-log10ψi). For all the polygons, values of θm were
calculated using equation (3) for 5, 10, 20, 40, 60, 80, 100, 150, 225, 300 and 500 kPa, θm1.5

were calculated

)y1.338(%cla= 0.7
m1.5θ

and θms were calculated from the bulk density.

With the soil desorption curve points estimated, it is necessary to fit an equation to it. Because
the van Genuchten's model is widely accepted and its parameters are required to run the
LEACHM model, it was used to obtain the parameters for each of 119 polygons. Details about
the model can be found in van Genuchten (1980). The functional equation is
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where θr, θr, a, n and m are parameters determined by non linear least squares method. The
goodness of fit of the van Genuchten's model fitted to the 13 soil desorption curve points of
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each of the 119 polygons, as measured by the correlation coefficients were very good, with the
R2 values above 0.96 in all instances.

1.4 Statistical analysis

Examination of the classical statistical moments of a data set usually reveals preliminary
information that can be very important, such as the extreme values, the coefficient of variation,
or the indicators of frequency distribution type. The classical statistical moments used within this
study are: the mean,
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where N is the number of measurements for each variable, Z.

The correlation matrix can be calculated for all combinations of any two attributes using the
equation,
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The expansion from point data to regions can be done through geostatistical analysis, under the
assumption that there is a continuous variation in soil properties from one point to its neighbour,
as indicated by spatial autocorrelation between neighbouring observations. The continuity of the
spatial distribution of the measurements has been evaluated using geostatistics (Vieira et al.,
1981, Vieira et al.,1983, Vieira et al. 1991). All geostatistical analysis are based on the
assumption that measurements separated by small distances are more likely to be similar to
each other than those farther apart, i.e, spatial autocorrelation exists. This assumption can be
verified through examination of the semivariograms for the attributes under investigation, i.e.,
the semivariogram is a statistical tool to measure the autocorrelation. For a set of values Z(xi),
measured at every one of the N locations xi, which, in turn is defined by a pair of co-ordinates
x,y the semivariogram can be calculated using the equation

]Z-Z[
2N(h)

1
=(h) 2

h)+(ii

N(h)

1i=
∑γ (11)

where N(h) is the number of neighbours separated by a distance, h. For autocorrelated data, the
semivariogram computed with equation (11) is an increasing function, because the neighbours
close together are more similar to each other than those which are further apart. A graph of g(h)
versus values of distance, h, is called the semivariogram and will represent the average
similarity between neighbours, which can, in turn, be used to interpret the spatial variation of the
data and to densify the grid with values estimated by the kriging interpolation method (Vieira et
al., 1983), to be described below. The assumption of spatial autocorrelation is accepted as valid
if the semivariogram increases as a function of the separation distance between neighbouring
values up to a certain distance, where it equals the value of the sample variance. This distance
is known as the range of correlation and defines the radius over which the values can affect the
estimation of an unknown value. The Y-axis intercept of the semivariogram graph is called the
nugget variance and represents the degree of discontinuity that exists at small distances, i.e.,
the smaller the nugget variance, the more similar neighbouring values are. The proportion of the
nugget variance to the value the sample variance is a measure of the degree of randomness of
the data at small distances. The magnitude of the nugget variance value is inversely related to
the precision of any estimation made using the semivariograms. All semivariograms used in this
paper were scaled according to the procedure established by Vieira et al. (1991), by dividing
each of them by the value of their respective variances. This way, the value to which the
resulting semivariograms stabilise is approximately one and comparison between them can be
easily made. To the graph of g(h) versus values of distance, a model equation must be fit in
order to be used during kriging interpolation. Within this study, the spherical, the exponential
and the power models were used and their equations will be described below. The curve fitting
technique used to adjust models to the calculated values of the semivariograms should not
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involve least squares methods because of the difficulties in judging the influence of local
variation at small distances in the final model as suggested by Journel and Huijbregts (1978).
The step by step procedures for the curve fitting are described in Vieira et al. (1983).

The spherical model adjusted to the experimental values follows the equation

])
a

h
0.5(-)

a

h
[1.5(C+C=(h) 3

10γ (12)

denoted in the referred figures as Sph(C0,C1,a) where the value C0 (called nugget effect)
represents the variability at scales smaller than the sampling distance, C0+C1 is the value at
which semivariances stabilise, and a is the range, whose value indicate the distance up to which
the samples have spatial autocorrelation.

The exponential model follows the equation

)]
a

3h-
(-[1C+C=(h) 10 Expγ (13)

denoted in the referred figures as Exp(C0,C1,a).

As long the assumption of autocorrelation can be proven to exist, then the kriging interpolation
method can be used. The kriging estimation follows the equation

)xZ(=)x(Z ii

N

1i=

0
* λ∑ (14)

where N is the number of neighbours measured involved in each estimation, and li are the
weights attached to each measured value. Kriging method requires the estimation to unbiased,
i.e.,

0=)]xZ(-)x(ZE[ 00
* (15)

and that the variance of the estimation be minimum, i.e.,

minimum=])xZ(-)x(ZE[ 2
00

* (16)

Using the estimator proposed in equation (14) subjected to the conditions (15) and (16), and
applying Lagrangian techniques of minimization, the kriging system is derived. The kriging
equations are

N1,=i,)x,x(=+)x,x( 0ijij

N
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1=j
N
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Therefore, kriging is an interpolation method that takes the similarity between neighbouring
measurements, i.e, autocorrelation, into account for each estimation made through the values of
the weights, l, used in each estimation. That means, if measurements are taken on a 10
kilometre grid in the field, and autocorrelation between neighbouring measurements exists as
calculated by equation [11], then kriging interpolation can be made using this autocorrelation to
obtain values for any desirable spacing, such as 1 kilometre, 2 kilometres, etc. For each kriging
estimation, the uncertainty involved on the interpolation process can be assessed through the
estimation variance,

)x,x(+=)x( 0ii

N

1i=

0
2 γλµσ ∑ (18)

A detailed development of the kriging equations can be found in Vieira et al. (1983). The kriging
grid had 1657 values at the separation distance of 2 kilometers. All the kriging estimation for the
Grand River watershed was made on this grid, from which it can be seen that whatever software
is used for the construction of contour maps, it will be very precise because of the high density
of information. Once the attribute of interest is estimated on a fine grid through kriging, contour
maps can be easily made in commercially available software, and subsequently transported to
the GIS.

1.5 Map analysis through a Geographical Information System (GIS).

Throughout this report, whenever there is a reference to a GIS, it should be understood
that it refers to a particular GIS software called ILWIS (Integrated Land and Water Information
System), used within this study. ILWIS is both a raster and vector based GIS, which works on
DOS environment, and has converting capabilities to both import to and from many other known
GIS.

There are two fundamental approaches to the representation of the spatial component of
geographic information: the vector model and the raster model (Aronoff, 1989). In the vector
mode, objects and conditions in the real world are represented by the points and lines that
define their boundaries, much as if they were being drawn on a map. In the raster model, the
space is regularly subdivided into cells (usually square in shape). The location of geographic
objects or conditions is defined by the row and column position of the cells they occupy.

The basic sequence of map analysis for the contour maps resulting from the kriging
interpolation done through the GIS involves: digitising the contour maps of the attributes for
which kriging was done; rasterizing the segment (contour map), in vector mode, creating an
attribute map with the values of each contour; interpolating from isolines, in the spatial modeling
mode of the raster analysis; erasing the interpolated region located outside of the map
boundaries, in map calculation of the spatial modeling, by multiplying the interpolated map by a
rasterized map with the value of 1 for the inside and 0 for the outside region; reclassifying the
resulting map, with the appropriate classification table in map calculation; manually making the
appropriate look up table, in raster visualization; making the appropriate map legend, in the
annotation mode of output; and finally printing the map with corresponding legend.
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Because of their nature, some attributes such as soils map and soil surface texture could not be
interpolated and thus, the procedure to produce these maps is different from the above. For the
soils map, the sequence is: digitizing of the map with the soil polygons with segment codes
different for each item, such as boundary, river, soils, etc.; checking segments for dead ends
and nodes; making polygons; naming the polygons according to the soil codes, modifiers and
polygon numbers. All of these are done in the digitizing mode. Subsequently, the map is
rasterized in vector mode without attribute values; the appropriate look up table is selected in
raster visualization; the map legend is created in the annotation mode of output; and then the
final map is printed. For the maps of the attributes which were not possible to be interpolated by
kriging such as surface texture, rooting depth, coarse fragments, etc., the procedure to follow is:
load the INF file (a file produced during rasterizing of the soils map, which is a table with the
polygon names, number of polygons, area, area and perimeter), in table calculation mode; add
a column with the desired appropriate name; edit the table entering the desired values; produce
the resulting map in map calculation, using the syntax OUTMAP:=TABLE.COLUMN[INMAP]
producing a byte map; make appropriate colour look up, in raster visualization; make
appropriate legend, in annotation mode of output; and print map.

The basic difference between the two above categories of maps is that the one produced via
kriging interpolation, contouring, etc., assume the attribute is continuously changing across the
field, while the maps produced with attribute table calculation assume that the entire polygon
has one single value of that attribute and is uniform for it. While for some qualitative attributes
this is the only possibility at this point, it may not be statistically correct to assume that one
entire polygon has one single and pure value of that attribute (Topp et al., 1980). Overlaying of
raster maps can be done between the two categories without any problem. The overlaying of
maps is done within map calculation using the IF statement with the syntax:
OUTMAP:=IF(CONDITION,THEN,ELSE), with the appropriate output map type.

5. Results and Discussion

A working scale had to be chosen right at the beginning, since there were basically two choices:
a 1:1,000,000 scale or a detailed scale of 1:45,000. It is important to emphasize that the
detailed scale is not really available as a whole for Southern Ontario, but rather, the soil survey
was done on a county-by-county basis. The integrated map covering regions not related to
counties has not been put together yet. Had it been done, a generalization for whatever larger
scale could have been easily made. In order to accomplish the objectives i) and ii) of this work,
it was necessary to use a large area for which, neither of the two scales were ideal, because
one is too small and the other is too big. A scale of 1:250,000 for the watershed would be ideal
for it would provide enough variety of soils to allow for a good evaluation of the performance of
the LEACHM model, and enough detail to allow for very high precision geostatistical estimation
of soil attributes.
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Table 1. Estatistical moments for atrazine loading, time and soil
physical attributes Grand River, Ontario, Canadá

Name Unit N Mean Variance C.V. Minimum Maximum Skewness Kurtosis

Horizon 1

Depth Cm 119 15.130   37.270   40.36 5.000 33.000 0.548 2.833

Coarse sand % 85 2.259   21.420  204.90 0.000 25.000 3.236 14.680

Very fine sand % 59   12.510  118.900   87.16 0.000 40.000 0.873 3.070

Total sand % 119   43.110  546.000   54.20 10.000 86.000 0.389 1.801

Silt % 119   39.450  245.600   39.73 9.000 64.000 -0.545 1.976

Clay % 119   18.960  113.000   56.06 5.000 49.000 0.593 2.547

Bulk density g/cm3 119    1.366    0.023   11.03 0.900 1.590 -0.820 3.111

 Organic Carbon % 119    1.733    0.533   42.11 0.500 3.900 0.550 2.982

Alpha 1/cm 119    0.022 1.675E-05   18.24 0.007 0.028 -2.168 7.457

M coefficient dml 119    0.324    0.003   16.54 0.260 0.442 0.790 2.588

Residual moistute % vol 119   14.270   30.490   38.68 6.000 26.600 0.168 1.846

Saturation
moisture

% vol 119   48.810   36.790   12.43 40.000 66.000 0.751 2.783

Hydraulic
conductivity

cm/s 119 6.652E-04 1.016E-06  151.50 2.100E-06 4.090E-03 2.282 7.099

Loading mg/m2 119    0.840    1.890  163.70 0.000 8.290 2.486 10.560

Time year 119   16.580  162.000   76.78 0.770 27.390 -0.333 1.122

Horizon 2

Depth cm 119 40.550 553.800 58.03 10.000 102.000 1.348 4.167

Coarse sand % 88 1.807 12.660 196.90 0.000 25.000 3.769 21.850

Very fine sand % 61 11.000 113.700 96.92 0.000 39.000 0.980 3.039

Total sand % 119 40.950 693.900 64.33 4.000 94.000 0.496 2.029

Silt % 119 39.130 262.400 41.39 5.000 64.000 -0.537 2.363

Clay % 119 19.920 186.700 68.60 1.000 63.000 0.850 3.364

Bulk density g/cm3 119 1.513 0.022 9.87 1.000 1.700 -1.051 4.459

 Organic Carbon % 119 0.965 0.588 79.45 0.170 5.160 2.812 15.620

Alpha 1/cm 119 0.020 6.634E-05 39.95 0.006 0.036 -0.665 2.318

M coefficient dml 119 0.342 0.005 20.19 0.244 0.526 0.732 2.980

Residual moistute % vol 119 17.220 75.340 50.41 2.000 34.100 -0.011 1.844

Saturation
moisture

% vol 119 44.450 41.030 14.41 35.900 66.000 1.144 4.977

Hidraulic
conductivity

cm/s 119 1.425E-04 6.953E-08 185.00 0.000E+00 1.980E-03 5.799 39.880

Loading mg/m2 119 0.840 1.890 163.70 0.000 8.290 2.486 10.560

Time year 119 16.580 162.000 76.78 0.770 27.390 -0.333 1.122
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Horizon 3

Depth cm 119 122.400 895.500 24.44 43.000 190.000 0.327 4.034

Coarse sand % 90 3.222 38.640 192.90 0.000 25.000 2.156 6.454

Very fine sand % 62 10.390 155.000 119.90 0.000 46.000 1.288 3.721

Total sand % 119 40.390 795.900 69.85 3.000 93.000 0.513 1.946

Silt % 119 34.670 235.400 44.25 6.000 56.000 -0.381 2.175

Clay % 119 24.940 310.700 70.67 1.000 65.000 0.477 2.169

Bulk density g/cm3 119 1.549 0.014 7.57 1.200 1.700 -0.859 3.685

 Organic Carbon % 119 0.465 0.182 91.76 0.100 3.000 3.613 21.450

Alpha 1/cm 119 0.024 9.271E-05 40.35 0.006 0.055 -0.067 3.826

M coefficient dml 119 0.331 0.005 21.11 0.249 0.516 0.885 2.976

Residual moistute % vol 119 19.740 100.500 50.76 2.100 36.700 -0.174 1.781

Saturation
moisture

% vol 119 41.450 20.020 10.79 35.500 63.000 2.092 10.340

Hidraulic
conductivity

cm/s 119 1.450E-04 1.020E-07 220.20 1.160E-07 1.780E-03 4.205 19.970

Loading mg/m2 119 0.840 1.890 163.70 0.000 8.290 2.486 10.560

Time year 119 16.580 162.000 76.78 0.770 27.390 -0.333 1.122

Because the ideal situation was not available, and because it was impossible to work with the
detailed scale for a large area, the 1:1,000,000 scale was chosen. Two other good reasons for
choosing this scale are that the Soil Landscapes of Canada and the Soil Carbon of Canada
databases are both on this scale, and were ready to be used. Moreover, good or bad, adequate
or not, for large areas such as the watershed, the Soil Landscapes of Canada is the only option
available.

From the classical statistical moments shown in table 1, it can be seen the high variability in soil
properties. Even bulk density, which usually does vary excessively over large areas, has
coefficients of variation of significant magnitude. As it is commonly found in field data, the
saturated hydraulic conductivity is highly variable and has a very skewed distribution, most
probably lognormal. Another important point here is the decrease in hydraulic conductivity from
the top horizon (Horizon 1) to the subsurface. This condition may favour the persistency of
pesticides within the soil profile for longer times, giving them the opportunity for degradation,
adsorption, and other processes. Moreover, it seems like the change in hydraulic conductivity is
likely due to change in soil structure, since the texture components do not change much with
depth. The high value for the coefficient of variation for the annual loadings of atrazine to the
groundwater, indicates that a high soil variability over the watershed. From the 119 polygons,
there are many soil profiles that did not have any loading at all after 10 years, but also, there are
soils with 8.29 mg/m2.

The semivariogram for the saturated hydraulic conductivity for the 3 horizons together and for
the atrazine loadings and treshold times are shown in figure 1. The exponential model showed a
reasonable fit to the experimental values of the semivariogram for loadings, time and Ksat for
horizon 1, with a range of 30 km. Since these semivariograms have been scaled by dividing the
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original semivariance values by the corresponding variance (Vieira et al. 1991), their closeness
indicates similarity in the variability of the corresponding variables. It follows then, that the
atrazine loadings and threshold times have a very similar spatial behavior to Ksat 1, but quite
different of the hydraulic conductivity for the other horizons. For this reason, it is possible that
the hydraulic conductivity of the horizon 1 is the one controlling the atrazine flow to deeper
layers. The semivariograms for Ksat for horizons 2 and 3 show a very clear periodical behavior.
Because of the nature of this attribute with many factors affecting it in different proportions
across the landscape, it is so variable from place to place, that the random component of the
variation almost surpasses the correlation. This is verified by the large nugget variance values,
and by the ups and downs of calculated semivariogram values. Remembering that the
semivariogram is a result of the mean squared differences between the neighbouring values, it
can be seen that values close together have more similar Ksat and atrazine attributes than
those farther apart. That means, the elevations are very well behaved and mathematically
continuous from point to point.
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Figure 1. Semivariograms for saturated conductivity, atrazine loadings
and time,Grand River watershed, Ontario,

The continuity between neighbouring observations of the textural components expressed
through the semivariograms shown in figure 2 for horizons 1, 2 and 3, with one single
exponential model adjusted to all of them, with a correlation range of 50 kilometres. This
guarantees that these attributes have continuity from place to place, and also supports the
geostatistical expansion from point information to the watershed region. Since the
semivariograms for the textural components are very well scaled to one single model, it can be
said that the change in hydraulic conductivity with depth is probably due to structure.
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Figure 2. Semivariograms for particle size attributes. Grand River
watershed, Ontario, Canada.

Virtually the same can be said about the semivariograms for the van Genuchten's parameters
shown in figure 3. The correlation ranges are almost the same and so are the models. That
means that the soil desorption curves over the watershed are closely related to the textural
components. The high variability of the saturated hydraulic conductivity discussed above, is also
reflected on the semivariograms shown in figure 3.
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Figure 3. Semivariograms for van Genuchten’s parameters. Grand River
watershed, Ontario, Canada.
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The maps obtained through kriging, digitising, etc., for the atrazine loadings and treshold times
are shown in figures 4 and 5, respectively. The comparison of these maps may be useful in the
interpretation of the results. The surface texture of the soils of the watershed, as it can be seen
in figure 31, is predominately from loam to heavier soils, a fact that may favour the persistence
of agrochemical within the soil profile for longer times. The lower part of the watershed is
constituted of soils having predominantly heavy clay texture. The amount of coarse fragments,
although it is not a input parameter for the LEACHM model, had the highest correlation with the
annual atrazine loadings. It should be emphasised that one large soil unit in the central part of
the watershed which is loamy sand has also the highest amount of coarse fragments. The slope
gradient for most of the watershed is flat or has small slopes. For this reason, it is expected that
small amounts of agrochemicals is lost by surface erosion. However, there is one portion at the
top of the watershed that shows shallow water table and is a silt loam soil, which could
contribute to faster leaching of pesticides to the water table.

Figure 4 shows the annual atrazine loadings
to a constant depth water table at 90 cm,
from which it can be seen that the regions
where there is low atrazine loadings are
more likely to be controlled by the soil
factors, in particular at the lower portion of
the watershed. The portion with the highest
loadings at the top left of the watershed
seems to be more affected by the total
precipitation, which is also high in that
region, in particular for winter and fall. There
is one region on the half left of the map that
shows low atrazine loadings, in spite of very
high total precipitation in all four seasons.
Since the surface texture is silt loam to clay
loam it is possible than low hydraulic
conductivity is the factor controlling the flow.
The remaining portion of the map seems to
be affected by both climate and soil factors.
Another fact noticeable on the annual
atrazine loadings shown in figure 4 is their
high variability over the watershed.

Considering that the map on figure 4 was obtained by classifying the original values into the
arbitrarily chosen classes, fact that tends to smooth some of the extreme values, the variability
is very high. Just from the classification legend it can be seen that a change from 0.1 to 2.5
mg/m2 corresponds to 25 times. The reason for this extreme variability seems to be much more
related to the soil properties than to the climate attributes. The textural components: minima and
maxima shown in table 1 indicate a very extreme textural change for any of the three depths. In
fact, the deeper layers have a higher variability than the surface layer, which is probably caused
by the mode of deposition of the soils of the majority of this region. Moreover, the saturated
hydraulic conductivity values for the deeper layers are 5 times smaller than that for the surface
layer, and the coefficients of variation increase with depth. This fact also contributes for the
variability of the annual atrazine loadings.

Figure 4. Atrazine loadings (mg/m2).
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The map on figure 5 shows the time in
years to reach the concentration of 3 ppb
at the 90 cm depth. The threshold value
of 3 ppb was chosen according to the
USEPA standards for drinking water
(USEPA, 1989). For the majority of the
watershed, it takes more than 10 years
for the concentration to reach the
threshold level. It is interesting to note
that the places where it takes less time to
reach 3 ppb at 90cm are not the same
where the highest loadings occur. The
soil properties may be of high importance
for this fact.

Using the resources of map calculation
within ILWIS, the two previous maps
were overlaid to produce what is referred
to, here, as contamination potential map,
shown in figure 38. This map produced
using the map calculation:
"OUTMAP:=IF(LOAD>1.0,IF(YEARS<3,1
,0),0)"
which means that, if the loadings are
greater than 1.0 mg/m2 and if it takes
less than 3 years to reach this level then
paint the map red, else paint it green.
Therefore, the red portions of the map
are not only where the loadings are
greater than 1.0 mg/m2 but also where it
takes less than 3 years for this to
happen.

Because of the complexity of the
processes involved within the
calculations made to generate the maps
for this study, the assessment of the
uncertainty level for the maps is not an
easy task. Many components with
different contributions can be responsible
for some degree of uncertainty of the
results, amongst which, the pedotransfer
functions, the expansion from point
information to landscapes through
Geostatistics, and the map handling
within ILWIS, will be addressed below.

Figure 5. Time (years) to reach threshold
concentration

Figure 6. Pollution risk
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The pedotransfer functions used to estimate soil properties for the polygons which did not have
them in the data base is one of the sources of uncertainty which present the most difficulty to
evaluate. First of all, because it is an estimation technique, it involves an error which is expected
to increase as the correlation coefficient, R2, decreases. The number of points in the regression
was 834 which is a result of 13 points in the desorption curve, for 68 different soils. Therefore,
all the points from the saturation to 15000 kPa were used for the calculation of the regression of
Estimated = a + b Measured. The only two slope factor significantly different from the others are
the ones for McBride and Macintosh (1984) and the ones fro Gupta and Larson (1979), which
are the two extremes best and worst, respectively. The correlation coefficients are also,
respectively, the best and worst for the above two models. Therefore, these parameters seem to
be reasonably good indicators of the goodness of fit for the pedotransfer function model.
However, the degree of uncertainty for each individual soil is no easily assessed.

The error involved on the expansion of the information from point to landscapes through kriging
estimation at very fine grid can be assessed through the estimation variance. The variation of
the estimation variances values within any area is directly proportional to the distance between
the closest measured value and the estimated (Vieira et al., 1981), being zero at the exact
location of the measured value, and maximum at the maximum distance. Therefore the
uncertainty will be greater where there are fewer or sparse values which is an obvious
information since it is much easier to trust an estimation if the neighbours used for the
estimation are close. The magnitude of the estimation variance with respect to the sample
variance depends upon the proportion of the nugget variance value of the semivariogram to the
sample variance, being the highest for a pure nugget variance semivariogram (a semivariogram
for which the nugget variance equals the sample variance, i.e., does not have any spatial
correlation).

The map handling through ILWIS has a much smaller contribution to the final uncertainty of the
results, because, up to a certain degree, it is somewhat operator dependent and decreases with
the experience acquired. For this study, most of the map handling was done at the final phase
of the project and this source of error was minimized.

6. CONCLUSIONS

Although the simulation model - transfer function - geostatistics - GIS methodology is still under
development, the preliminary results are very encouraging. The calculated pedotransfer
functions and semivariograms are, for the most part, well behaved; and the kriged distributions
seem plausible for the regions in question. Consequently, it is felt that this methodology is very
useful for assessing the risk of agrochemical pollution of ground water resources, as well as for
the development of land use practices and guidelines leading to acceptable levels of
agrochemicals in the environment.

The analysis of the results of this study allow to conclude that:
• The loadings of atrazine to the groundwater are controlled by soil hydraulic properties at

the regions where the loadings are low, and more likely to be controlled by the weather
conditions at places where the hydraulic conductivity of the soils is not limiting. For the
most part of the watershed, the loadings of atrazine are below 1.0 mg/m2 but at some
places they are both greater than 1.0 mg/m2 and they reach this level in less than 3
years.
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• The methodology used to expand information from point to landscapes with the
geostatistical techniques has proved itself very useful, with the assumptions easily
verified through the semivariograms.

As a recommendation for future research, it can be said that improvements in the techniques
adopted within this study would be achieved if more dependable data could be made available,
and if better pedotransfer functions could be developed for the estimation of values for soils for
which they had not been measured. Field measured soil properties for different environmental
conditions is essential for adequately testing the pedotransfer functions.
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