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Using the mollifier method to characterize datasets and
models: the case of the universal soil loss equation

Michiel A Keyzer* and Ben G J S Sonneveld*

ABSTRACT from the underlying process models to be acceptable to
The mollifier method is a numerical technique that has been applie gronomists and soil scientists. Moreover, the spat|al

widely in physics and chemistry to approximate mathematical function eta”_ 1S genera”y limited, which causes geOQrapherS to
of an irregular shape. In this paper, we propose to use it for nan-parquestion the approach.

metric interpolation to characterize dataset and models. The basic idea is The present paper argues that combining non-para-
to lay a “soft blanket” over a profile of points generated by an empiriga}netric interpolation methods from statistics with the

dataset or by a mathematical model. If the blanket is pulled “tightly”, it . . .
surface will smoothen most of the irregularities of the underlying profilei/Isual tools of cartography mlght heIp b“dge the gap

This amounts to averaging out information over a wider window siz€tween these professions. The proposed approach is
(neighbourhood) around every point. The resulting mollifier estimateclose to cartography in that it primarily relies on colour-
(blanket) can be given a three-dimensional graphical representation wiffy| visual display, but it also meets the demands of
a dependent variable mapped out against two independent variables, E’éonometricians in that it uses an explicit mathematical

fixed values of other independent variables. Compared with parametréc I . h h | istical i .
methods such as spline regression or variorum estimation, the moliifidPfmalization that has a clear statistical interpretation.

method has the important advantage that it gives a measure of statistifainally, it should appeal to representatives of the bio-
reliability at every point and that this measure does not depend on the fihysical sciences because it allows the data to be close-

at other points. This makes it possible to create a picture of the blankg} followed without imposing the straitjacket of any
that has a higher resolution (through a deeper colour or a darker shadi nctional form

in regions where the mapping is more reliable. In addition, the introduc- ’ . . .

tion of a plane in the 3D presentation is used to depict the goodness of 1N€ paper describes the non-parametric model in an

fit. As an illustration, we apply this technique to the dataset of the uniinformal manner, relegating the technical discussion to
versal soil loss equation (USLE), the USLE itself, and the deviationshe Appendix. We apply the proposed method to the
between the two. The resulting graphs show the estimated values abtaset on erosion that was compiled by the National

annual soil loss, as well as the error of the model mapped against t . . .
explanatory variables of the USLE and for average values of non-visibl oil Erosion Research Laboratory in West Lafayette’

exogenous variables. The following properties stand out: (1) The datfidiana, to calibrate the universal soil loss equation
are heavily concentrated in certain areas of the graphs, where the prof@JSLE). We will show the type of functional form that
bility of a correct estimate is relatively high and the model error low g being suggested by the data and comment on the pat-

Applying the USLE here is relatively reliable. (2) Unexpected trends i P :
the shape of the regression curve are shown, whereas the mapping thal qgln of deviations that exist between these data and the

based on data is perfectly foggy in this range. calibrated USLE equation.

Attempts at integrating biophysical and socio-economidODELS OF NON-PARAMETRIC INTERPOLATION

analysis have often failed in the past. A major reasoRPATIAL INTERPOLATION

has been that it is not possible to achieve meaningful Geographic information systems (GIS) contain data
integration by studying biophysical processes in onabout a given set of geographic locations. These data
box, or subsystem, and socio-economic processes iefer to particular variables generated from empirical
another, with a limited number of interrelationships link-observations or from particular calculations based on
ing the two subsystems. |If this were possible, it wouldimple rules or complex process models. The GIS apply
be relatively easy to demarcate fields of expertise, witlarious kinds of spatial interpolation techniques to fill
a separate module for every field, and to develop ththe gaps in space between the observations. This
integrated system as little more than the sum total of itsnables them to generate colourful maps in two or three
components. Unfortunately, the economic analysis cardimensions.

not be conducted within a separate box. It is necessary For example, consider a given dataset S of real-valued
to incorporate technologic relationships within the deciobservations indexed s, and partition it into a vector of n
sion models of economic actors, usually the farmer ofbounded) endogenous variablesfipm the bounded set
the government. Thus the economist will invite expertX. In a GIS, the vector will usually stand for the geo-
in biophysical sciences to supply technologic informagraphic coordinates latitude and longitude. The aim of
tion. However, these attempts have faced severe diffspatial interpolation techniques is to calculate a value
culties in meeting the standards of the various profesy(x) at intermediate points X, thus creating a blanket that
sions involved. Technologic relationships are eithefills the gaps between the observations. Interpolation
insufficiently formalized and tested statistically, whichmethods usually define a weighting functiors(xy and
makes them unacceptable to economists, or too distacdompute:

- 595 S S
y() = Zs=1y wix) (1]
1 Centre for World Food Studies of the Free University (SOW-VU) . ) . . )
Amsterdam, The Netherlands where the weighting function¥x) is (1) continuous, (2)
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non-negative, (3) summing to unjtyZ§’=1WS(X) =1 and randomly chosen time intervals s = 1, ..., S, it makes
(4) passing through the observations: y(x)s= €learly, perfectly accurate measurements of outside condi-
the simplest form for the weighting function would betions, such as temperature or atmospheric pressure.

the arithmetic averagesi) = 1/S. However, the aeroplane’s equipment is unable to mea-
sure accurately the spatial coordinates(adtitude, lati-
NON-PARAMETRIC INTERPOLATION MODELS tude, longitude) of the measurement. What is recorded

In principle, these three-dimensional maps describe as a measurement at is, with likelihood Y(g), a mea-
particular relief through a function that maps out thesurement at %- &, where the likelihood function is
altitude as a function of the geographic coordinates, blnown a priori (it depends on the characteristics of the
a good relief map does more. It also describes the paggquipment, not on the external conditions and not on the
tern of other variables through variations in colourlocal conditions). Consequently, to any given point
shading, patterns, etc. It is this capacity to represemheasurementsycorresponds a continuum of values x =
more than three variables in a three-dimensional plots - €, and conversely we can for every given value x
that we will seek to exploit. Clearly, these ideas readieompute (1) the likelihood)(xs - x) of x being the value
ly extend to applications where the vector has a largexctually associated withsy (2) the likelihoodW(x) =
dimension, and also includes causal factors such as hfilay(xs - x) of x being associated with any of the obser-
slope or rainfall. However, since it is not possible tovations ¥, in addition we can define the likelihood ratio
visualize the function y(x) if the dimension of x exceeds¥(x)/W, for W, = S P(0) to obtain a measure of the
two, we will have to keep m -2 components of x fixed abbservation density ranging between zero and unity and,
controlled values, say at the mean value. As long as thimally, (3) the conditional likelihoodje, ratio Y(xs -
pair of x-variables that are not fixed represent longitude)/W(x), which is the probability ¥x), from which we
and latitude, we remain within the context of a GIS andan calculate the expected value of y atexthe regres-
depict the spatial variability of y. As soon as other varision function y(x). We notice that had there been no
ables are shown on the axes, the diagram shows relarror in measurement, it would not have been possible to
tionships between other factors, and depicts technologimake any inference for intermediate points other thfan x
functions. However, GIS methods have the analytic limThus, the randomization with a known distributigue)
itation that the weighting functions are generally hiddemmakes it possible to make the transition from a point
in procedures over which the user only has limited convalue to a function.

trol. Clearly, the resulting estimates depend on the accura-

cy of the aeroplane’s equipment. We assumed the like-
THE MOLLIFIER AS A STATISTICAL APPROACH TO NON-PARA-  lihood distribution of the measurement error to be a
METRIC INTERPOLATION known a priori. Thus, this non-parametric regression

Requiring the interpolated value to pass through thenethod replaces the assumption about the parametric
observations makes the procedure mechanical in tHerm to be known by one where the likelihood density is
sense that it rules out the possibility of random errorsknown. The theoretical justification is that as the num-
Alternatively, interpolation can be viewed as the calcuber of observations is increased and the window size
lation of an expected value in the statistical sense. Theduced, the interpolated value will approach the true
weighting function Ww(x) will then be equal to the prob- model, independently of the assumed form of this likeli-
ability Ps of ys being the correct value of y(x), but this hood function (see Appendix).
means that errors have to be accounted for and henceCompared with parametric methods such as spline
that it is natural to give up the requirement that theegression or variogram estimation, the mollifier method
interpolation curve should pass through the observatiomas the important advantage that it gives a measure of
The resulting specification will be: statistical reliability at every point and that it does not

_ S . sgs depend on the fit at other points. Indeed, for every point
y) = Zs=1y P (x) [2] X, we calculate the expected value, the likelihood ratio

This defines a non-parametric regression functionto measure the availability of observations, and as a
whose shape will depend on the postulated form of thmeasure of fit, a probability {x) of y falling within an
probability function. For example, ifsyis a scalar and a-percent range around y(x). These statistics will be
xs a two-dimensional vector of ground coordinatesdepicted in the same diagram through a colouring or a
every observation s can be viewed as a pole of height ghading of surface plots
located at point X The regression curlays a “soft blan-

ket” on these poles that absorbs the peaks of the highes
poles (upward outliers) and remains above the lowe tNON'PARAMETR'C INVESTIGATION OF THE UNI-

poles. The mollifier uses a control variable to vary the ERSAL SOIL LOSS EQUATION (USLE) DATASET

band (or window) width of the neighbourhood of x The dataset that we use for the analysis is a represen-
whose points affect the prediction of y. If the averagindative sample from the original USLE dataset. Riste
emphasizes nearby points, the probability function isl [12] compiled the data to evaluate the model efficien-
said to use a small window size. The larger the windowy of the USLE. It comprises 1704 observations on
size, the tighter the blanket. The analytic form of thennual soil loss, collected from 208 natural runoff plots
probability function B(x) of this model can be obtained at 22 experimental stations in the United States in the
in various ways. We will apply the mollifier approach, period 1930 to 1980. Each variable of the USLE equa-
which is given in some detail in the Appendix. Here weion is determined on the sites.
only give an intuitive description of this approach.

Suppose that an aeroplane conducts surveillanceélE USLE
flights at varying altitudes above a given territory. At The USLE [16] is the most widely used water erosion
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model to predict erosion hazards and to obtain plans fahe upper and lower bounds of which are given by 10
soil conservation measures. The mathematical form gfercent of the sample mean. y Alternative window
the USLE is a multiplication of six factors that gives ansizes are used to determine the width of the neighbour-
assessment of soil loss: hood around x that affect the estimation of y.

A = RXKXLSXCxP [3] ~ We will consider the regression curves of three rela-

tionships. The first curve shows estimated values of soil

where A is soil loss expressed in ton per ha per year; Rss mapped against rainfall erosivity and topography.
is the rainfall erosivity, representing the destructivedlNe use it for a stepwise introduction of the regression
impact of raindrops on soil aggregates, and the runoffurve with its statistical characteristics. The second
that serves as a transport module for soil particles; K iegression curve maps estimates of soil loss against soil
the soil erodibility which characterizes the vulnerabilityerodibility and soil coverage. Lastly, we map the esti-
of soil types to water erosion; LS are the topographicnated model error of the USLE against the rainfall ero-
factors, which can be subdivided into slope gradient ansivity and topography.
slope length, and which affect the volume and erosion
causative speed of the runoff; C stands for soil coverag&pIL LOSS vs RAINFALL EROSIVITY AND TOPOGRAPHY
the spatial and temporal distribution of leaf area and We will start our exercise with a scatter plot (Figure
organic matter on top of the soil; finally, P is a value forl) of soil loss observations (z-axis) against rainfall ero-
soil conservation measures. sivity (x-axis) and topography (y-axis). The scatter plot

The USLE is popular for its easy applicability andconfronts us immediately with the limitations of this
low data requirements as compared with process-baséghe of presentation: it is difficult to observe any clear
models such as WEPP and EUROSEM. In 1978, iteelationship from these discrete data and we are not able
developers, Wischmeier and Smith, wrote theo show the influence of other explanatory variables, soil
Agricultural Handbook 537, in which USLE factors canerodibility, soil coverage, and the protection factor.
be derived from tables, charts and nomographs. Sir~-
then, the USLE has been applied in numerous studie: g 1555 vs Rainfall Erosivity and Topography index
assess erosion hazard of the land. However, the ec USLE data set n = 1704 (Source: NSERL)
tion has several shortcomings.

(1) The USLE is basically a statistical model, whic
makes it heavily dependent on the dataset that was
for its calibration. This is shown in the numerous stu
ies where individual factors are recalibrated when t
USLE is applied outside its calibration domain. F«
example, topography values were recalibrated by Hu
[6], Liu et d [7] and McCoolet d [8]; and rainfall ero-
sivity indexes adjusted for humid tropical areas we
given by Hudson [5], Arnoldus [1] and Hargreaves [4
A soil erodibility index for tropical soils is found in
Vanelslana et d [14].

(2) It has a low (Nash-Suttcliff) model fit for annua
soil loss estimations {r= 0.57), although it leads to bet
ter results for long-term estimateg & 0.75) [12].

(3) The USLE consistently overestimates small sc
losses and underestimates high soil losses (Nearing
prep).

(4) A further disadvantage is the functional form, th et R e A
multiplication of six factors, which easily leads to largeq g re 1
error propagation if one or more factors are misspecifie
[15].

Figure 2 shows the graphical presentation of non-

APPLICATION OF THE MOLLIFIER parametric estimates of soil loss mapped against rainfall

The high dependence on data for its calibration androsivity and soil erodibility, while the exogenous vari-
the poor fit make it worthwhile to apply the mollifier ables soil erodibility, soil coverage and protection factor
method to the original USLE dataset to review relationare conditioned on their mean.
ships between observed soil loss, the model error and In Figure 3, we exhibit the measure of observation
explanatory variables. In this analysis, we will exhibitdensity (the likelihood of the point x of the grid being
these relationships in 3D diagrams, where the non-parassociated with the observations by means of different
metric estimate (regression curve) of the endogenowshades on the surface plot. The shading goes from a
variable is mapped out against two exogenous variablatark (high observation density) to a light (low observa-
on a 50 x 50 grid, while the non-visible variables ardion density) grey.
conditioned on their mean. The 3D diagrams show the The probabilities of an accurate estimate are shown in
estimated values of the endogenous variable as surfattee different colours of the plane in Figure 4. The leg-
plots (the blanket). The colours in the surface plot preend bar on the lower left side of the figure indicates the
sent the likelihood ratio of the observation density. Theolour shift from low to high probability. The colours
colours in the plane below the surface plot project théor the observation density are shown in the surface plot
probability of y falling within the interval around y(x), and the corresponding legend appears at the upper right
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Soil loss vs Rainfall Erosivity and Topography index
USLE data set n = 1704 (Source: NSERL)
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Soil loss vs Rainfall Erosivity and Topography index
USLE data set n = 1704 (Source: NSERL)
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side of the graph. The values of the class boundaries The regression curve in Figure 4 shows a slow linear
appear next to the legends. The vertical histograms indincrease in estimated soil loss for lower and middle val-
cate the area distribution of the legend class in the suuwes of rainfall erosivity and topography. For higher val-
face plot and plane. ues, the soil loss increases exponentially but flattens out
Figure 5 shows the estimates of soil loss (includindor their extremes. An unexpected “dip” is shown near
observations density and probabilities of correct estithe highest values of rainfall and topography, whereas
mate) under a band width of 0.5. The reduced banthe observation density is at its lowest, making this area
width loosens the “blanket” of the mollifier, thereby of the graph extremely sensitive to the few observations
making it adhere more closely to the original spikesn its vicinity. The observation density shown in Figure
formed by the data. 3 (and 4) is heavily concentrated around the lower val-
In Figure 6, the band width is reduced to 0.1 and thises of rainfall and topography, and drops rapidly for
leads to an increasingly bumpy surface, as expected. their middle and higher values. For a band width of 1,
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Soil loss vs Rainfall Erosivity and Topography index
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Soil loss vs Rainfall Erosivity and Topography index
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the probability of a correct estimate increases for smalkopography and protection factor. Similar to the previ-

er values of rainfall erosivity and topography, but has aus figures, the colours in the surface plot depict the
rather low average value (6.2 percent). This indicatesbservation density and the colours in the plane show
the limited capacity of the exogenous variables irthe probability of a correct estimate; the band width is
explaining annual soil loss values. For reduced banput at 1.

widths of 0.5 (and 0.1), the probability increases in areas Figure 8 shows the same relationships with a band
of low observation density because of the limited variwidth of 0.5.

ability among the few observations that determine their Both regression curves (Figures 7 and 8) give small
value. The areas with a higher observation density shosoil losses for low values of soil erodibility and soil cov-

a greater variability and, consequently, a lower relativerage factor. The soil loss remains low even for high

probability of an accurate estimate. values of the soil coverage factor in combination with
low values of soil erodibility. This indicates that even
SOIL LOSS vs SOIL ERODIBILITY AND SOIL COVERAGE bare soil can withstand soil detachment if it contains

Figure 7 shows the estimated values of soil lossufficient erosion-resistant properties. Soil loss increas-
mapped against the soil coverage factor and soil erodés exponentially for middle values of erodibility and soil
bility with fixed mean values for rainfall erosivity, coverage factor and reaches its maximum in a plateau.
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Soil loss vs Rainfall Erosivity and Topography index

USLE data set n = 1704 (Source: NSERL)
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The regression curve shows, surprisingly, a decrease amnual soil loss. For a reduced band width (Figure 7),
soil loss for the highest erodibility values when com-the probability increases considerably, especially in
pared with its middle values. The observation density odreas with few observations, but follows the earlier pat-
the coverage factor is well represented for its lower antern.

highest values and somewhat less for the middle to high-

er range. The erodibility factor has few observations foMODEL ERROR, RAINFALL EROSIVITY AND TOPOGRAPHY

its extremely low and high values. The probability of Figure 9 represents the estimated model error (soil
the correct estimate at a band width of 1.0 has a lovoss observations - USLE estimations) against rainfall
average value (5.6 percent), confirming the low explanaerosivity and topography factor. For the estimation, the
tory power of exogenous variables in accounting fosoil erodibility, coverage factor and protection factor are

268



Using the mollifier method ITC Journal 1997-3/4

Soil loss vs Soil Erodibility and Soil Coverage
USLE data set n = 1704 (Source: NSERL)
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Model error vs Rainfall Erosivity and Topography index

USLE data set n = 1704 (Source: NSERL)
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conditioned on their mean. The red line indicates thaigher values of topography. The large model devia

zero level of the model error. tions occur, as expected, in areas where observation den
Figure 10 shows the same relationships with a bansity and probability of a correct estimate are low.

width of half the original value. The graph has been

rotated a 180 to facilitate the visualization of the curve

at the extreme values of the rainfall erosivity and tepogcoNCLUSK)NS

raphy index. This paper has described how non-parametric -tech
The regression curve in Figure 9 shows that USLEiques can be combined with cartographic skills to char

calculations have a low model error for low rainfall -ero acterize large datasets and model results. The non-para

sivity and topography values, which part correspondsetric approach has the advantage that no a priori model

with the highest observation density. The USLE grosslys imposed on the data. The visualization of the molli

underestimates (positive errors) soil loss for high valueBed values in multidimensional graphs shows the -rela

of the rainfall erosivity in combination with low values tionships between (conditioned and unconditioned)-vari

of topography. The USLE overestimates soil loss foebles and uses colouring and planes to accommodate
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Model error vs Rainfall Erosivity and Topography index

USLE data set n = 1704 (Source: NSERL)
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RESUME RESUMEN

La méthode d'adaptation “mollifier” est une technique numérique qui &l método de suavizacion (mollifier method) es una técnica numérica,
été largement appliquée en physique et chimie pour approcher des formpse ha sido ampliamente aplicada en las ciencias fisicas y quimicas para
tions mathématiques de forme irréguliere. Dans cet article, nous propaproximar funciones matematicas de tipo irregular. En este articulo, se
sons de I'utiliser pour une interpolation non-paramétrique pour caractérpropone usar este método en la interpolacién no-paramétrica paca cara
ser des séries de données et des modeles. L'idée de base est d'étetehiear series de datos y modelos. La idea fundamental es de colocar una
une “toile souple” sur un profil de points créés par une série empiriqudmanta suave” sobre un perfil de puntos, los cuales han sido generados
de points ou par un modele mathématique. Si la toile est mainteny®r una serie empirica de datos o por un modelo matematico. Si se hala
“tendue”, sa surface va lisser la plupart des irrégularités du profil sousapretadamente” la manta, su superficie va a alisar la mayoria de las irre-
jacent. Ceci revient a moyenner de I'information sur une fenétre plugularidades del perfil subyacente. Esto conduce a promediar datos en
large (proximité) autour de chaque point. L’estimation résultant de cettena ventana mas ancha (vecindario) alrededor de cada punto. El estima-
“toile tendue” (*mollifier”) peut étre représentée graphiquement en troislo de suavizacion resultante (la manta) puede ser representada-grafic
dimensions avec une variable dépendante représentée par rapport a deente en tres dimensiones, con una variable dependiente cartografiada
variables indépendantes, pour des valeurs fixes d’autres variabées incdcontra dos variables |ndepend|entes para valores fijos de otras variables
pendantes. Comparé avec des méthodes paramétriques telles qu’umgependientes. Comparado con métodos paramétricos como la regre-
régression courbe (spline) ou une estimation des variations, la méthod®n de cufia (spline regression) o la estimacion de variantes (variorum
“mollifier” a un avantage important, a savoir qu’elle donne une fiabilitéestimation), el método de suavizacion tiene la importante ventaja que da
statistique a chaque point et que cette mesure ne dépend pas de I'ajustea medida de confiabilidad estadistica en cada punto y que esta medida
ment d’autres points. Ceci permet de créer une image de la toile aveo depende del ajuste efectuado en otros puntos. Esto hace posible crear
une résolution plus élevée (en utilisant une couleur plus accentuée oma imagen de la manta que tiene una resolucion mas alta (realzada
une ombre plus foncée) dans des régions ou le levé est plus fiable. Brediante un color méas fuerte o una sombra mas oscura) en areas donde
plus, l'introduction d’'un plan dans la représentation 3D est utilisée pouel mapeo es méas confiable. En adicion, se utiliza la introduccion de un
décrire la validité de I'ajustement. Comme illustration, nous appliquonglano en la representacién tridimensional para mostrar la fineza del ajus-
cette technique a une série de données de I'équation universelle de page Como ilustracion, se aplica esta técnica a la serie de datos de la ecua-
de sol (USLE), a I'équation USLE elle-méme et aux déviations entre lesion universal de pérdida de suelos (USLE), a la USLE misma, y a las
deux. Les graphiques qui en résultent montrent les valeurs estimées diesviaciones entre las dos. Los graficos resultantes muestran los valores
pertes de sol annuelles, ainsi que I'erreur du modele représentépar rastimados de pérdida anual de suelos, asi como el error del modelo
port a deux variables explicatives de I'équation USLE et pour les valeurmapeado contra dos variables explanatorias de la USLE y para t¢es val
moyennes de variables exogénes non visibles. |l s’en dégage les propniés medios de variables exégenas no-visibles. Las siguientes propied
tés suivantes: (1) Les données sont fortement concentrées dans certaithes se destacan: (1) Los datos se concentran fuertemente en ciertas areas
zones des graphiques ou la probabilité d’'une estimation correcte est retie los graficos, donde la probabilidad de obtener un estimado correcto es
tivement élevée et I'erreur modele faible. L’application de I'équationrelativamente alta y el error del modelo es bajo. Aqui, la aplicacion de
USLE est ici relativement fiable. (2) Des tendances inattendues dans |l USLE es relativamente confiable. (2) Aparecen tendencias imesper
forme de la courbe de régression sont montrées, alors que la représemtas en la forma de la curva de regresion, mientras que el mapeo basado
tion basée sur les données est trés confuse dans cette région. en datos es perfectamente nebuloso.

APPENDIX



Annex: the mollifier mapping

The function P°(x)can be derived in two equivalent ways either from kernel density

estimation (Parzen, 1962, Bierens, 1987, Nadaraya, 1989) or from mollifier theory (see
Sobolev, 1988, Ermoliev et al., 1995 and Pflug, 1996). Kernel density regression considers
an unknown joint density function f(y, x) of bounded variance and seeks to characterise, on

the basis of the empirical observations { y°, x°}, the regression function

R(x) = Ely[x] (A1)
Hence the basic model is

y=R(X} n (A.2)

where 1 is an error with mean zero, bounded variance and unknown density. The
Nadaraya-Watson Kernel density regression curve approximates R(x) by means of

Rs(X)=ZilysP§(X) (A.3) for

PS() =w((xS X)@ W F(x),if ¥5(x) >0 and 0 otherwise (A.4)
where

VP00 = Yo (=10 ) (A.5)

and window size (band-width) is set optimally according to some function
0 =Kk(S), (A.6)
such that

k(S—>0 as S—»>» and
(k(S)MS—>w as S—w

The density function yw:R™ — R,ye () is Borel measurable and satisfies: J.qf( 9d =1;

de 9d <oo; IimHSHm—>oo lefe ( )=0, where |g] is the Euclidean norm and
sup,, ye(<P

In this approach, expression y((x*-x)® ) in (A.5) can be interpreted as the likelihood of x

being associated to the observation s and lI’es(x) the likelihood of x being associated to any
of the observations in the sample (summation is possible because of randomness of the
sample). Hence probability P5(x)is the likelihood of x being associated to observation s,

conditional on its association to at least one observation in the sample. Thus yg’(x) is the



expectation of the y°-values associated with the sample and is therefore subject to a
sampling error on x°.

The mollifier approach also uses (A.3) and (A.4) as estimator, but the underlying postulate
about the relation between y and x is more specific. While the kernel density interpretation is
common in econometrics, the mollifier is popular in optimization theory and is used to
provide a "bird's-eye" view of models with stochastic variables, integer variables, and other
complex features.

Thus both approaches yield the same finite sample estimation. For this paper we applied the
mollifier because its terminology more closely suits the purpose of 3D-display. It considers a

sample of size S of accurate observations y° made at randomly selected points X° drawn
from a uniform distribution on the compact convex set X and assume that there is a
measurement error in X°. Let the likelihood of an error £%>=x°-x (i.e. the likelihood of x
being the correct co-ordinate associated to y°) be characterised by a given mollifier density
function (e /6) . The resulting stochastic model is:

y=R(X+¢g) (A7)

Thus, unlike (A.2), the mollifier approach postulates a deterministic function y(:) and only

accounts for error in associating an observation x° to a given y*°. The mollifier mapping itself
is defined as the expected value of y(x +¢), given x and for S— o :

Yo (X) = E[ R(X+ a)|x] , (A.83)
- jR(x+ e)y(e/0)dk (A.8b)
~limg,, 1/ sz; R x+ &) y(c®/ 6) (A.8c)

and where the density function (e /6) has Lebesgue measure, a mode at £ =0, and for 6
(the window size) going to zero, its support goes to zero.



