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Using the mollifier method to characterize datasets and
models: the case of the universal soil loss equation

Michiel A Keyzer1 and Ben G J S Sonneveld1
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ABSTRACT

The mollifier method is a numerical technique that has been app
widely in physics and chemistry to approximate mathematical functio
of an irregular shape.  In this paper, we propose to use it for non-pa-
metric interpolation to characterize dataset and models.  The basic id
to lay a “soft blanket” over a profile of points generated by an empiri
dataset or by a mathematical model.  If the blanket is pulled “tightly”, 
surface will smoothen most of the irregularities of the underlying profi
This amounts to averaging out information over a wider window s
(neighbourhood) around every point.  The resulting mollifier estima
(blanket) can be given a three-dimensional graphical representation 
a dependent variable mapped out against two independent variables
fixed values of other independent variables.  Compared with parame
methods such as spline regression or variorum estimation, the moll
method has the important advantage that it gives a measure of statis
reliability at every point and that this measure does not depend on th
at other points.  This makes it possible to create a picture of the bla
that has a higher resolution (through a deeper colour or a darker sha
in regions where the mapping is more reliable.  In addition, the introd
tion of a plane in the 3D presentation is used to depict the goodnes
fit.  As an illustration, we apply this technique to the dataset of the u
versal soil loss equation (USLE), the USLE itself, and the deviatio
between the two.  The resulting graphs show the estimated value
annual soil loss, as well as the error of the model mapped against
explanatory variables of the USLE and for average values of non-vis
exogenous variables.  The following properties stand out: (1) The d
are heavily concentrated in certain areas of the graphs, where the p
bility of a correct estimate is relatively high and the model error lo
Applying the USLE here is relatively reliable.  (2) Unexpected trends
the shape of the regression curve are shown, whereas the mapping t
based on data is perfectly foggy in this range. 

Attempts at integrating biophysical and socio-econom
analysis have often failed in the past.  A major reas
has been that it is not possible to achieve meaning
integration by studying biophysical processes in o
box, or subsystem, and socio-economic processes
another, with a limited number of interrelationships lin
ing the two subsystems.  If this were possible, it wou
be relatively easy to demarcate fields of expertise, w
a separate module for every field, and to develop 
integrated system as little more than the sum total of
components.  Unfortunately, the economic analysis c
not be conducted within a separate box.  It is necess
to incorporate technologic relationships within the de
sion models of economic actors, usually the farmer 
the government.  Thus the economist will invite expe
in biophysical sciences to supply technologic inform
tion.  However, these attempts have faced severe d
culties in meeting the standards of the various prof
sions involved.  Technologic relationships are eith
insufficiently formalized and tested statistically, whic
makes them unacceptable to economists, or too dis
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from the underlying process models to be acceptable
agronomists and soil scientists.  Moreover, the spat
detail is generally limited, which causes geographers
question the approach.

The present paper argues that combining non-pa
metric interpolation methods from statistics with th
visual tools of cartography might help bridge the ga
between these professions.  The proposed approac
close to cartography in that it primarily relies on colou
ful visual display, but it also meets the demands 
econometricians in that it uses an explicit mathematic
formalization that has a clear statistical interpretatio
Finally, it should appeal to representatives of the bi
physical sciences because it allows the data to be clo
ly followed without imposing the straitjacket of any
functional form.

The paper describes the non-parametric model in 
informal manner, relegating the technical discussion 
the Appendix.  We apply the proposed method to t
dataset on erosion that was compiled by the Nation
Soil Erosion Research Laboratory in West Lafayett
Indiana, to calibrate the universal soil loss equati
(USLE).  We will show the type of functional form tha
is being suggested by the data and comment on the 
tern of deviations that exist between these data and 
calibrated USLE equation.

MODELS OF NON-PARAMETRIC INTERPOLATION
SPATIAL INTERPOLATION

Geographic information systems (GIS) contain da
about a given set of geographic locations.  These d
refer to particular variables generated from empiric
observations or from particular calculations based 
simple rules or complex process models.  The GIS ap
various kinds of spatial interpolation techniques to f
the gaps in space between the observations.  T
enables them to generate colourful maps in two or th
dimensions.

For example, consider a given dataset S of real-valu
observations indexed s, and partition it into a vector o
(bounded) endogenous variables ys from the bounded set
X.  In a GIS, the vector will usually stand for the geo
graphic coordinates latitude and longitude.  The aim 
spatial interpolation techniques is to calculate a val
y(x) at intermediate points x, thus creating a blanket th
fills the gaps between the observations.  Interpolati
methods usually define a weighting function ws(x) and
compute:

where the weighting function ws(x) is (1) continuous, (2)

[1]y(x) =  ΣS
s= 1 y

s
w

s(x)
)
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non-negative, (3) summing to unity: and
(4) passing through the observations: y(x) = ys.  Clearly,
the simplest form for the weighting function would b
the arithmetic average ws(x) = 1/S.

NON-PARAMETRIC INTERPOLATION MODELS

In principle, these three-dimensional maps describe
particular relief through a function that maps out th
altitude as a function of the geographic coordinates, 
a good relief map does more.  It also describes the p
tern of other variables through variations in colou
shading, patterns, etc.  It is this capacity to repres
more than three variables in a three-dimensional p
that we will seek to exploit.  Clearly, these ideas rea
ly extend to applications where the vector has a larg
dimension, and also includes causal factors such as 
slope or rainfall.  However, since it is not possible 
visualize the function y(x) if the dimension of x exceed
two, we will have to keep m -2 components of x fixed 
controlled values, say at the mean value.  As long as 
pair of x-variables that are not fixed represent longitu
and latitude, we remain within the context of a GIS a
depict the spatial variability of y.  As soon as other va
ables are shown on the axes, the diagram shows r
tionships between other factors, and depicts technolo
functions.  However, GIS methods have the analytic lim
itation that the weighting functions are generally hidd
in procedures over which the user only has limited co
trol.

THE MOLLIFIER AS A STATISTICAL APPROACH TO NON-PARA-
METRIC INTERPOLATION

Requiring the interpolated value to pass through t
observations makes the procedure mechanical in 
sense that it rules out the possibility of random erro
Alternatively, interpolation can be viewed as the calc
lation of an expected value in the statistical sense.  T
weighting function ws(x) will then be equal to the prob-
ability Ps of ys being the correct value of y(x), but thi
means that errors have to be accounted for and he
that it is natural to give up the requirement that t
interpolation curve should pass through the observati
The resulting specification will be:

This defines a non-parametric regression functio
whose shape will depend on the postulated form of 
probability function.  For example, if ys is a scalar and
xs a two-dimensional vector of ground coordinate
every observation s can be viewed as a pole of heighs

located at point xs.  The regression curlays a “soft blan
ket” on these poles that absorbs the peaks of the hig
poles (upward outliers) and remains above the low
poles.  The mollifier uses a control variable to vary t
band (or window) width of the neighbourhood of 
whose points affect the prediction of y.  If the averagi
emphasizes nearby points, the probability function 
said to use a small window size.  The larger the wind
size, the tighter the blanket.  The analytic form of th
probability function Ps(x) of this model can be obtained
in various ways.  We will apply the mollifier approach
which is given in some detail in the Appendix.  Here w
only give an intuitive description of this approach.

Suppose that an aeroplane conducts surveillan
flights at varying altitudes above a given territory.  A

[2]y(x) =  ΣS
s= 1 y

s
P

s(x)

ΣS
s = 1 w

s(x) =  1
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randomly chosen time intervals s = 1, …, S, it mak
perfectly accurate measurements ys of outside condi-
tions, such as temperature or atmospheric press
However, the aeroplane’s equipment is unable to m
sure accurately the spatial coordinates xs (altitude, lati-
tude, longitude) of the measurement.  What is record
as a measurement at xs is, with likelihood ψ(ε), a mea-
surement at xs - ε, where the likelihood function is
known a priori (it depends on the characteristics of t
equipment, not on the external conditions and not on 
local conditions).  Consequently, to any given poi
measurement ys corresponds a continuum of values x 
xs - ε, and conversely we can for every given value
compute (1) the likelihood ψ(xs - x) of x being the value
actually associated with ys, (2) the likelihood Ψ(x) =
∑sψ(xs - x) of x being associated with any of the obse
vations ys, in addition we can define the likelihood rati
Ψ(x)/Ψ0, for Ψ0 = S ψ(0) to obtain a measure of th
observation density ranging between zero and unity a
finally, (3) the conditional likelihood, ie, ratio ψ(xs -
x)/Ψ(x), which is the probability Ps(x), from which we
can calculate the expected value of y at x, ie, the regres-
sion function y(x).  We notice that had there been 
error in measurement, it would not have been possible
make any inference for intermediate points other thans.
Thus, the randomization with a known distribution ψ(ε)
makes it possible to make the transition from a po
value to a function.

Clearly, the resulting estimates depend on the accu
cy of the aeroplane’s equipment.  We assumed the li
lihood distribution of the measurement error to be
known a priori.  Thus, this non-parametric regressi
method replaces the assumption about the parame
form to be known by one where the likelihood density
known.  The theoretical justification is that as the nu
ber of observations is increased and the window s
reduced, the interpolated value will approach the tr
model, independently of the assumed form of this like
hood function (see Appendix).

Compared with parametric methods such as spl
regression or variogram estimation, the mollifier meth
has the important advantage that it gives a measure
statistical reliability at every point and that it does n
depend on the fit at other points.  Indeed, for every po
x, we calculate the expected value, the likelihood ra
to measure the availability of observations, and as
measure of fit, a probability Qα(x) of y falling within an
α-percent range around y(x).  These statistics will 
depicted in the same diagram through a colouring o
shading of surface plots 

A NON-PARAMETRIC INVESTIGATION OF THE UNI-
VERSAL SOIL LOSS EQUATION (USLE) DATASET

The dataset that we use for the analysis is a repre
tative sample from the original USLE dataset.  Risseet
al [12] compiled the data to evaluate the model efficie
cy of the USLE.  It comprises 1704 observations 
annual soil loss, collected from 208 natural runoff plo
at 22 experimental stations in the United States in 
period 1930 to 1980.  Each variable of the USLE equ
tion is determined on the sites.   

THE USLE

The USLE [16] is the most widely used water erosi
4
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model to predict erosion hazards and to obtain plans
soil conservation measures.  The mathematical form
the USLE is a multiplication of six factors that gives 
assessment of soil loss:

A = RxKxLSxCxP [3]

where A is soil loss expressed in ton per ha per yea
is the rainfall erosivity, representing the destruct
impact of raindrops on soil aggregates, and the run
that serves as a transport module for soil particles; K
the soil erodibility which characterizes the vulnerabil
of soil types to water erosion; LS are the topograp
factors, which can be subdivided into slope gradient 
slope length, and which affect the volume and eros
causative speed of the runoff; C stands for soil cover
the spatial and temporal distribution of leaf area a
organic matter on top of the soil; finally, P is a value 
soil conservation measures.

The USLE is popular for its easy applicability an
low data requirements as compared with process-b
models such as WEPP and EUROSEM.  In 1978,
developers, Wischmeier and Smith, wrote t
Agricultural Handbook 537, in which USLE factors c
be derived from tables, charts and nomographs.  S
then, the USLE has been applied in numerous studie
assess erosion hazard of the land.  However, the e
tion has several shortcomings. 

(1) The USLE is basically a statistical model, whi
makes it heavily dependent on the dataset that was 
for its calibration.  This is shown in the numerous st
ies where individual factors are recalibrated when 
USLE is applied outside its calibration domain.  F
example, topography values were recalibrated by Hu
[6], Liu et al [7] and McCool et al [8]; and rainfall ero-
sivity indexes adjusted for humid tropical areas w
given by Hudson [5], Arnoldus [1] and Hargreaves [
A soil erodibility index for tropical soils is found in
Vanelslande et al [14].

(2) It has a low (Nash-Suttcliff) model fit for annu
soil loss estimations (r2 = 0.57), although it leads to be
ter results for long-term estimates (r2 = 0.75) [12].

(3) The USLE consistently overestimates small s
losses and underestimates high soil losses (Nearing
prep).

(4) A further disadvantage is the functional form, t
multiplication of six factors, which easily leads to lar
error propagation if one or more factors are misspeci
[15].

APPLICATION OF THE MOLLIFIER

The high dependence on data for its calibration 
the poor fit make it worthwhile to apply the mollifie
method to the original USLE dataset to review relatio
ships between observed soil loss, the model error 
explanatory variables.  In this analysis, we will exhi
these relationships in 3D diagrams, where the non-p
metric estimate (regression curve) of the endogen
variable is mapped out against two exogenous varia
on a 50 x 50 grid, while the non-visible variables a
conditioned on their mean.  The 3D diagrams show 
estimated values of the endogenous variable as su
plots (the blanket).  The colours in the surface plot p
sent the likelihood ratio of the observation density.  T
colours in the plane below the surface plot project 
probability of y falling within the interval around y(x)
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the upper and lower bounds of which are given by 
percent of the sample mean y- .  Alternative window
sizes are used to determine the width of the neighbo
hood around x that affect the estimation of y.

We will consider the regression curves of three re
tionships.  The first curve shows estimated values of s
loss mapped against rainfall erosivity and topograp
We use it for a stepwise introduction of the regress
curve with its statistical characteristics.  The seco
regression curve maps estimates of soil loss against 
erodibility and soil coverage.  Lastly, we map the es
mated model error of the USLE against the rainfall e
sivity and topography.  

SOIL LOSS vs RAINFALL EROSIVITY AND TOPOGRAPHY

We will start our exercise with a scatter plot (Figu
1) of soil loss observations (z-axis) against rainfall e
sivity (x-axis) and topography (y-axis).  The scatter p
confronts us immediately with the limitations of th
type of presentation: it is difficult to observe any cle
relationship from these discrete data and we are not a
to show the influence of other explanatory variables, s
erodibility, soil coverage, and the protection factor.

Figure 2 shows the graphical presentation of no
parametric estimates of soil loss mapped against rain
erosivity and soil erodibility, while the exogenous var
ables soil erodibility, soil coverage and protection fac
are conditioned on their mean.

In Figure 3, we exhibit the measure of observati
density (the likelihood of the point x of the grid bein
associated with the observations by means of differ
shades on the surface plot.  The shading goes from
dark (high observation density) to a light (low observ
tion density) grey.

The probabilities of an accurate estimate are shown
the different colours of the plane in Figure 4.  The le
end bar on the lower left side of the figure indicates t
colour shift from low to high probability.  The colour
for the observation density are shown in the surface p
and the corresponding legend appears at the upper r

FIGURE 1

Soil loss vs Rainfall Erosivity and Topography index
USLE data set n = 1704 (Source: NSERL) 
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side of the graph.  The values of the class bounda
appear next to the legends.  The vertical histograms in
cate the area distribution of the legend class in the s
face plot and plane.

Figure 5 shows the estimates of soil loss (includi
observations density and probabilities of correct es
mate) under a band width of 0.5.  The reduced ba
width loosens the “blanket” of the mollifier, thereb
making it adhere more closely to the original spik
formed by the data.  

In Figure 6, the band width is reduced to 0.1 and t
leads to an increasingly bumpy surface, as expected.
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The regression curve in Figure 4 shows a slow lin
increase in estimated soil loss for lower and middle 
ues of rainfall erosivity and topography.  For higher v
ues, the soil loss increases exponentially but flattens
for their extremes.  An unexpected “dip” is shown n
the highest values of rainfall and topography, wher
the observation density is at its lowest, making this a
of the graph extremely sensitive to the few observat
in its vicinity.  The observation density shown in Figu
3 (and 4) is heavily concentrated around the lower 
ues of rainfall and topography, and drops rapidly 
their middle and higher values.  For a band width o
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Soil loss vs Rainfall Erosivity and Topography index
USLE data set n = 1704 (Source: NSERL) 
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the probability of a correct estimate increases for sm
er values of rainfall erosivity and topography, but ha
rather low average value (6.2 percent).  This indica
the limited capacity of the exogenous variables 
explaining annual soil loss values.  For reduced b
widths of 0.5 (and 0.1), the probability increases in ar
of low observation density because of the limited va
ability among the few observations that determine th
value.  The areas with a higher observation density s
a greater variability and, consequently, a lower relat
probability of an accurate estimate.  

SOIL LOSS vs SOIL ERODIBILITY AND SOIL COVERAGE 

Figure 7 shows the estimated values of soil l
mapped against the soil coverage factor and soil er
bility with fixed mean values for rainfall erosivity
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topography and protection factor.  Similar to the pre
ous figures, the colours in the surface plot depict 
observation density and the colours in the plane sh
the probability of a correct estimate; the band width
put at 1.

Figure 8 shows the same relationships with a ba
width of 0.5.  

Both regression curves (Figures 7 and 8) give sm
soil losses for low values of soil erodibility and soil co
erage factor.  The soil loss remains low even for h
values of the soil coverage factor in combination w
low values of soil erodibility.  This indicates that eve
bare soil can withstand soil detachment if it conta
sufficient erosion-resistant properties.  Soil loss incre
es exponentially for middle values of erodibility and s
coverage factor and reaches its maximum in a plate
7
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Soil loss vs Rainfall Erosivity and Topography index
USLE data set n = 1704 (Source: NSERL) 
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The regression curve shows, surprisingly, a decreas
soil loss for the highest erodibility values when com
pared with its middle values.  The observation density
the coverage factor is well represented for its lower a
highest values and somewhat less for the middle to hi
er range.  The erodibility factor has few observations 
its extremely low and high values.  The probability 
the correct estimate at a band width of 1.0 has a 
average value (5.6 percent), confirming the low explan
tory power of exogenous variables in accounting f
26
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annual soil loss.  For a reduced band width (Figure 
the probability increases considerably, especially 
areas with few observations, but follows the earlier p
tern.

MODEL ERROR, RAINFALL EROSIVITY AND TOPOGRAPHY

Figure 9 represents the estimated model error (
loss observations - USLE estimations) against rain
erosivity and topography factor.  For the estimation, 
soil erodibility, coverage factor and protection factor a
8
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FIGURE  9
t

e

L
o

s

s
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ar
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date
conditioned on their mean.  The red line indicates 
zero level of the model error.  

Figure 10 shows the same relationships with a ba
width of half the original value.  The graph has be
rotated a 180 to facilitate the visualization of the cur
at the extreme values of the rainfall erosivity and topo-
raphy index.

The regression curve in Figure 9 shows that US
calculations have a low model error for low rainfall er-
sivity and topography values, which part correspon
with the highest observation density.  The USLE gros
underestimates (positive errors) soil loss for high valu
of the rainfall erosivity in combination with low value
of topography.  The USLE overestimates soil loss 
26
he

nd
n

ve
g

E

ds
ly
es

or

higher values of topography.  The large model dev-
tions occur, as expected, in areas where observation -
sity and probability of a correct estimate are low.  

CONCLUSIONS

This paper has described how non-parametric te-
niques can be combined with cartographic skills to ch-
acterize large datasets and model results.  The non-p-
metric approach has the advantage that no a priori m
is imposed on the data.  The visualization of the mo-
fied values in multidimensional graphs shows the re-
tionships between (conditioned and unconditioned) va-
ables and uses colouring and planes to accommo
9
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information on statistical properties of the estimated va
ues.  This allows non-linearities of relationships to b
studied and, at the same time, the reliability of the es
mated value to be evaluated.  The application of t
mollifier method to the USLE dataset shows that obse
vation densities are low for the higher R and LS valu
and the lower and higher K values.  Applying the USL
in these areas might lead to large errors, as is shown
the example with mollified model error value.

A disadvantage of the non-parametric method is th
while the model derived in this manner could be high
flexible and elaborate, it will only reflect theoretica
restrictions through the choice of variables and n
through properties of the functions, precisely becau
the moulding of the model into a particular shape 
almost exclusively driven by the data.  In the context 
policy modelling, this is often considered unsatisfacto
and a parametric approach would eventually be pref
able.  In fact, the non-parametric model can be view
as an intermediate product.  Research is currently un
way to fit a parametric model to the non-parametr
function (Ermoliev and Keyzer, in prep).  This has th
advantage over direct estimation of the parametric mo
in that it becomes possible to ensure a good fit not on
at points where data are available but also in betwe
these points.  Another line of ongoing research is 
develop software that allows the visual representation
be generated in an interactive manner, allowing the u
to “visit” his dataset and explore the underlying interre
lationships in it—much like in an adventure game.
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RESUME
La méthode d’adaptation “mollifier” est une technique numérique qu
été largement appliquée en physique et chimie pour approcher des f
tions mathématiques de forme irrégulière.  Dans cet article, nous pro
sons de l’utiliser pour une interpolation non-paramétrique pour caract
ser des séries de données et des modèles.  L’idée de base est d’ét
une “toile souple” sur un profil de points créés par une série empiriq
de points ou par un modèle mathématique.  Si la toile est mainte
“tendue”, sa surface va lisser la plupart des irrégularités du profil so
jacent.  Ceci revient à moyenner de l’information sur une fenêtre p
large (proximité) autour de chaque point.  L’estimation résultant de ce
“toile tendue” (“mollifier”) peut être représentée graphiquement en tro
dimensions avec une variable dépendante représentée par rapport à
variables indépendantes, pour des valeurs fixes d’autres variables iné-
pendantes.  Comparé avec des méthodes paramétriques telles qu
régression courbe (spline) ou une estimation des variations, la méth
“mollifier” a un avantage important, à savoir qu’elle donne une fiabili
statistique à chaque point et que cette mesure ne dépend pas de l’aj
ment d’autres points.  Ceci permet de créer une image de la toile a
une résolution plus élevée (en utilisant une couleur plus accentuée
une ombre plus foncée) dans des régions où le levé est plus fiable.
plus, l’introduction d’un plan dans la représentation 3D est utilisée po
décrire la validité de l’ajustement.  Comme illustration, nous appliquo
cette technique à une série de données de l’équation universelle de 
de sol (USLE), à l’équation USLE elle-même et aux déviations entre 
deux.  Les graphiques qui en résultent montrent les valeurs estimée
pertes de sol annuelles, ainsi que l’erreur du modèle représenté parp-
port à deux variables explicatives de l’équation USLE et pour les vale
moyennes de variables exogènes non visibles.  Il s’en dégage les pro
tés suivantes: (1) Les données sont fortement concentrées dans cert
zones des graphiques où la probabilité d’une estimation correcte est 
tivement élevée et l’erreur modèle faible.  L’application de l’équatio
USLE est ici relativement fiable.  (2) Des tendances inattendues dan
forme de la courbe de régression sont montrées, alors que la représa-
tion basée sur les données est très confuse dans cette région.  
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RESUMEN
El método de suavización (mollifier method) es una técnica numérica,
que ha sido ampliamente aplicada en las ciencias físicas y químicas para
aproximar funciones matemáticas de tipo irregular.  En este artículo, se
propone usar este método en la interpolación no-paramétrica para carac-
terizar series de datos y modelos.  La idea fundamental es de colocar una
“manta suave” sobre un perfil de puntos, los cuales han sido generados
por una serie empírica de datos o por un modelo matemático.  Si se hala
“apretadamente” la manta, su superficie va a alisar la mayoría de las irre-
gularidades del perfil subyacente.  Esto conduce a promediar datos en
una ventana más ancha (vecindario) alrededor de cada punto.  El estima-
do de suavización resultante (la manta) puede ser representado gráfica-
mente en tres dimensiones, con una variable dependiente cartografiada
contra dos variables independientes, para valores fijos de otras variables
independientes.  Comparado con métodos paramétricos como la regre-
sión de cuña (spline regression) o la estimación de variantes (variorum
estimation), el método de suavización tiene la importante ventaja que da
una medida de confiabilidad estadística en cada punto y que esta medida
no depende del ajuste efectuado en otros puntos.  Esto hace posible crear
una imagen de la manta que tiene una resolución más alta (realzada
mediante un color más fuerte o una sombra más oscura) en áreas donde
el mapeo es más confiable.  En adición, se utiliza la introducción de un
plano en la representación tridimensional para mostrar la fineza del ajus-
te.  Como ilustración, se aplica esta técnica a la serie de datos de la ecua-
ción universal de pérdida de suelos (USLE), a la USLE misma, y a las
desviaciones entre las dos.  Los gráficos resultantes muestran los valores
estimados de pérdida anual de suelos, así como el error del modelo
mapeado contra dos variables explanatorias de la USLE y para los valo-
res medios de variables exógenas no-visibles.  Las siguientes propieda-
des se destacan: (1) Los datos se concentran fuertemente en ciertas áreas
de los gráficos, donde la probabilidad de obtener un estimado correcto es
relativamente alta y el error del modelo es bajo.  Aquí, la aplicación de
la USLE es relativamente confiable.  (2) Aparecen tendencias inespera-
das en la forma de la curva de regresión, mientras que el mapeo basado
en datos es perfectamente nebuloso.
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Annex: the mollifier mapping

The function P xs( ) can be derived in two equivalent ways either from kernel density
estimation  (Parzen, 1962, Bierens, 1987, Nadaraya, 1989) or from mollifier theory (see
Sobolev, 1988, Ermoliev et al., 1995 and Pflug, 1996). Kernel density regression considers
an unknown joint density function f(y, x) of bounded variance and seeks to characterise, on
the basis of the empirical observations { ys , xs}, the regression function

R x E y x( )  [ ]�  (A.1)

Hence the basic model is

y R x� �( ) � (A.2)

where � is an error with mean zero, bounded variance and unknown density. The
Nadaraya-Watson Kernel density regression curve approximates R(x) by means of

R x  y P xs
s

s

S s( )  ( )�
�� 1 �

 (A.3)   for

P x  x x  xs s  S
� �

� �( )  ((  ) / ) /  ( )� � � , if  �
�

S x( )  > 0 and 0 otherwise  (A.4)

where

�
�

S x( )  =  � �(( ) / )x xs
s

S

�

� 	
1

 (A.5)

and window size (band-width) is set optimally according to some function

�= k(S),            (A.6)

such that

k S( )
 0 as S��  and

( ( ))k S  Sm 
� as S��

The density function � �	: , ( )R Rm �
�

 is Borel measurable and satisfies: �� �( )d �� 1;

�� �( )d�  � ; lim
�

m 
�  ��� ( ) � 0 , where �  is the Euclidean norm and

sup ( ) .
�
�� ��

In this approach, expression � �( ) / )(xs � x  in  (A.5) can be interpreted as the likelihood of x

being associated to the observation s and �
�

S x( )  the likelihood of x being associated to any

of the observations in the sample (summation is possible because of randomness of the
s

15

sample). Hence probability P x
�
( ) is the likelihood of x being associated to observation s,

conditional on its association to at least one observation in the sample. Thus y xS
�
( ) is the



expectation of the ys-values associated with the sample and is therefore subject to a
sampling error on xs .

The mollifier approach also uses (A.3) and (A.4) as estimator, but the underlying postulate
about the relation between y and x is more specific. While the kernel density interpretation is
common in econometrics, the mollifier is popular in optimization theory and is used to
provide a "bird's-eye" view of models with stochastic variables, integer variables, and other
complex features.

Thus both approaches yield the same finite sample estimation. For this paper we applied the
mollifier because its terminology more closely suits the purpose of 3D-display. It considers a
sample of size S of accurate observations ys  made at randomly selected points xs  drawn
from a uniform distribution on the compact convex set X and assume that there is a
measurement error in xs . Let the likelihood of an error 	s sx x� �  (i.e. the likelihood of x

being the correct co-ordinate associated to ys) be characterised by a given mollifier density
function � � �( / ) . The resulting stochastic model is:

y R x� �( )�  (A.7)

Thus, unlike (A.2), the mollifier approach postulates a deterministic function y( )� and only

accounts for error in associating an observation xs  to a given ys . The mollifier mapping itself
is defined as the expected value of y x( )� � , given x and for S�� :

� �y x E R x x
�

�( ) ( )� � ,          (A.8a)

� �� R x d( ) ( / )� � � � �          (A.8b)

� �
�� ��lim / ( ) ( / )s

s
s

S
S R x1

1
� � � �          (A.8c)
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and where the density function � � �( / )  has Lebesgue measure, a mode at 	 � 0 , and for �
(the window size) going to zero, its support goes to zero.


