Performing Map Calculations on GRASS Data:
r.mapcalc Program Tutorial

Marji Larson
Michael Shapiro
Scott Tweddale

U.S. Army Corps of Engineers
Construction Engineering Research Laboratory
Environmental Division
Spatial Analysis Systems Team
P.O. Box 9005
Champaign, IL 61826-9005

December 1991

Table of Contents

TaADIE OFf CONLENES ..ottt e et e s e e s s b e e s s bt e s s saae e s sabe e s sbbessabaeessnbesssneessanens
O g 0o [£ o o [T
A © T<!01x- (o] o [N

[o IR SN S S I \V]

4. Sample SeSSON/EXAMPIEScuerieiirieiirieirierte et
5. Conclusions and RECOMMENUBLIONScoeeeeiiiiiiieiiie sttt see b srasssaessresens 13
RS (=10 TR 13

1. INTRODUCTION

1.1. Background

This document details the capabilities of r.mapcalc, a program that allows users to manipulate, analyze,
and create map data by performing mathematical calculations on raster map layers. It is included
among Geographic Resources Analysis Support System (GRASS) software. GRASS is a public domain,
image processing, and geographic information system (GIS) originally developed by researchers in the
Environmental Divison of the U.S. Army Corps of Engineers Construction Engineering Research
Laboratory (USACERL-EN) in Champaign, Illinois. The system is used to input, manipulate, analyze,
and output geographic data by users in both military and non-military and public and private agencies
based in North America, Europe, and other parts of the world.

Although most GRASS development has been conducted at USACERL, system integration, develop-
ment, testing, distribution, training, and support is performed by numerous publicly- and privately-
operated sites throughout the world. GRASS version 4.0 implemented significant additions and
modifications to system libraries and programming code. Mechanisms are needed to transfer current
technology and information about GRASS to user and development sites.

This document reflects modifications made to GRASS version 4.0 and guides the user through the con-
struction of raster map analyses using r.mapcalc.

1.2. Objective

The objective of this work is to transfer knowledge of GRASS version 4.0 raster map analysis functions
to the field. This document guides the user through the process of using r.mapcalc to manipulate,
create, and analyze raster data layers in GRASS using mathematical expressions.

1.3. Approach
Current GRASS r.mapcalc functions are examined in this report.

14. Scope

This document discusses the 4.0-release version of the GRASS r.mapcalc program, completed in the
Summer of 1991. Some elements of this document will be dated and inaccurate for post-4.0 software
releases.

1.5. Mode of Technology Transfer

The information in this report will aid the technical transfer of USACERL’s GRASS image processing
and geographic information system. GRASS is being transferred to the field through the following
mechanisms. training programs, hands-on experience, a user support center, newsletters, extensive
documentation, ingtitutional structures at the Army and interagency levels, communication networks,
and other forums.

User feedback on GRASS program capabilities, documentation, and other technology transfer mechan-
isms is important to the development of the system. Users are encouraged to communicate such feed-
back to GRASS development staff at USACERL, via existing electronic communication networks and
via the GRASS Information Center at USACERL, P.O. Box 9005, Champaign, IL 61826-9005; phone
217-373-7220; fax 217-373-7222; or e-mail grassbug@zorro.cecer.army.mil.

2. ORIENTATION

This paper describes the use and syntax of the GRASS software tool r.mapcalc. This tool uses
mathematical syntax to perform analyses on existing map layers within GRASS. It allows a user to
create a new map layer which is the result of a mathematical expression which may contain raster map
layer names, integer or floating point constants, and known mathematical functions. r.mapcalc is
designed to act as a calculator for maps. Mathematical calculations are performed for each grid cell of
a raster map layer, applying the mathematical functions supplied by the user.

It is assumed that the reader is familiar with the meanings of raster data format, map layers, the
current mapset and location, regions, and masks in GRASS. These and other basic GRASS concepts
are reviewed in the GRASS hard copy and on-line help facility (accessible through g.help), in the
GRASS Programmer’s Manual (Shapiro et al., 1992), and in other GRASS documents available through
the GRASS Information Center at USACERL.

Land managers are given the job of protecting, maintaining, and developing areas of land. To
perform this duty, a land manager needs various types of geographical information. Some of this infor-
mation may be available in the GRASS database, represented by raster map layers. Other information
may not be available directly, but can be derived by analyzing and/or combining information from one
or more existing raster map layers. Often, the manner in which information needs to be interpreted or
combined can be represented by a mathematical equation. In such a case, the GRASS tool r.mapcalc
provides the user with a means for quickly obtaining the desired resultant geographical information.

r.mapcalc is a calculator for raster map layers, performing mathematical calculations on a cell-
by-cell basis to obtain a new raster map layer. Calculations are done in the usual precedence of opera-
tions with parentheses used to designate an otherwise desired ordering.

3. SYNTAX
The r.mapcalc command expects input in the form of:

result = expression

Within the equation "result=expression”, result is the name of the new raster map layer to contain the
result of the calculation, and expression is any legal mathematical expression involving raster map
layers, integer or floating point constants, and functions known to the r.mapcalc calculator. Known
operators and functions are listed in following sections, along with the order of computation for the
operations.

r.mapcalc will create the resulting raster map layer in the current mapset. It should be noted that
r.mapcalc works with the current region and mask settings. Caution should be used to insure correct
results. If the user finds that the output from a r.mapcalc equation is not as expected, the current
region and mask setting should be checked.

The r.mapcalc command can be used in one of three ways:

- entering the equation on the command line

- entering only the command name (no equation),
and then entering equations, one at a time, at the
new (MAPCALC) prompt

- passing one or more equations to the map calculator
via redirected standard input (either from a file
Or across a pipe)

Because the UNIX shell interprets some characters to have special meanings (see the Special Charac-
ters section below), the user is advised to use the second of these methods. However, an explanantion
of each input method follows.

If the equation (result=expression) is given on the command line, only one equation can be pro-
vided. This equation is evaluated, the new map layer is created, and the user is returned to the GRASS

4.0 prompt.

If the command r.mapcalc is entered alone, then a new (MAPCALC) prompt appears, and the
user can enter equation after equation. After the entry of each equation, it is evaluated, the new map
layer is created, and the user is returned to the MAPCALC prompt. After all desired equations have
been evaluated, the user is returned to the GRASS 4.0 prompt by simply hitting the RETURN key
(without entering anything on the line) to denote that no more equations are to be given.

In the event of lengthy formulas in the expression, a line continuation feature has been added.
By adding a\ to the end of the input line, r.mapcalc assumes that the formula continues onto the next
input line. There is no limit to the number of imput lines or to the length of the formula. Please note
that the line continuation feature only works when entering formulas from standard input and does not
work if the user enters input on the command line. Therefore, if the user is working with lengthy
expressions, they should enter the standard input mode by typing r.mapcalc alone on the command line
and hit return before entering input.

Input can also be provided through redirected standard input (from a file or across a pipe). If one
or more equations have been entered into a file, they can be evaluated using r.mapcalc in one of the
following ways:

r.mapcalc < inputfile
or
cat inputfile | r.mapcalc

The cat command simply types out the contents of a file. The pipe character | tells UNIX to "pipe" the
results of one command into another command. Thus, in this last example, the contents of the file
inputfile are piped to the r.mapcalc command as input. It is not the intention of this document to cover
either the cat command or the piping capabilities of UNIX in detail. No further examples using the pipe
capability will be given.

When equations are sent to the r.mapcalc command via redirected standard input, all entered
equations are evaluated, one after another, and the user is returned to the GRASS 4.0 prompt when the
end of the file or input stream is reached.

-6-

3.1. OPERATORS AND ORDER OF PRECEDENCE

Operator Meaning Type Precedence
% modulus (remainder upon division) Arithmetic 1
/ division Arithmetic 1
* multiplication Arithmetic 1
+ addition Arithmetic 2
- subtraction Arithmetic 2
== equal Logica 3
I= not equal Logical 3
> greater than Logical 3
>= greater than or equal Logical 3
< less than Logica 3
<= less than or equal Logica 3
&& and Logica 4
Il or Logica 4

Division by 0 and modulus by O are acceptable and give a O result.

The operators are applied from left to right, with those of lower numbered precedence applied
before those with higher numbered precedence. Parentheses are allowed, and can be used to override
stated precedence. Nested parentheses are allowed to any depth.

3.2. FUNCTIONS
The following functions are currently supported:

abs(x) return absolute value of x
eva ([X,Y,...,]2) evaluate values of listed expr, pass results to z
float(x) convert x to floating point
if decision options:
if(x) 1if x not zero, O otherwise
if(x,a) aif x not zero, 0 otherwise
if(x,a,b) aif x not zero, b otherwise
if(x,a,b,c) aif x>0,bif xiszero, cif x<0
int(x) convert X to integer [truncates |
log(x) natural log of x
log(x,b) log of x base b
max(x,y[,z...]) largest value of those listed
median(x,y[,z...]) median value of those listed
min(x,y[,z...]) smallest value of those listed
round(x) round x to nearest integer
sort(x) sguare root of x
tan(x) tangent of x (x is in degrees)

The variables x, y, z, & b, and ¢ above can be replaced by integer or floating point constants, a
raster map layer name, or another expression involving constants, raster map layers, and other functions,
provided the numbers represented are within the allowable domain of the given function. (For instance,
"tan(expression)’ makes sense only if expression’ evaluates to a number representing degrees.)

Note that although functions are available which produce floating point results, the resulting raster
map can hold only integer (category) values. Thus, if the final "answer" to a calculation is a floating

point number, the number will be rounded to the nearest integer before being stored as a value in the
resulting map layer.

Calculations will be done according to the type of values being used in the expression. For
instance, (8 / 3) will be calculated using integer arithmetic, and the answer will be 2. If the user wants
the answer to be a floating point number which is rounded, care should be taken to create floating point
arithmetic; for example, (8.0/ 3) and (float(8) / 3) would be evaluated as floating point values (here,
2.66) that are finally rounded to 3 after all calculations are completed, when assigned as map category
values in the resultant map layer.

Anything given in the mathematical expression which is not a constant, an operator, or a known
function name will be taken as a raster map layer name. If a GRASS raster map layer has been given a
name which could be interpreted as a constant or an arithmetic expression, the raster map layer name
must be enclosed in double quotes for correct use with the r.mapcalc command. For instance, suppose
a map layer has been created which is a reclass of a soils map layer, and it has been named soils-
reclass. The expression

newmap=soils-reclass * 2

would attempt to create a raster map layer named newmapwhich is the raster map layer soils minus the
raster map layer reclass times 2, while the expression

newmap="soils-reclass’ * 2
would attempt to create a raster map layer named newmap which is the raster map layer soils-reclass
times 2.
Using quotes around the resulting map name is an error.

3.3. MAPSET SEARCH PATHS

The r.mapcalc command will look for the map layer names given in the mathematical expression
according to the current mapset search path. It is possible to use a raster map layer found in another
mapset by explicitly specifying the mapset (mapname@mapset). For instance, in the following expres-
sion:

newmap = X@PERMANENT /y

the raster map layer x will be looked for specifically in mapset PERMANENT, while the raster map
layer y will be searched for in the mapsets included in the user’s current GRASS mapset search path.

The "@mapset” form is not allowed in the name for the resulting map layer, which is automati-
cally created in the current mapset.

3.4. SPECIAL CHARACTERS

For evaluating only one equation, it is simplest to enter the equation on the command line. How-
ever, there are two things about this usage of the r.mapcalc command that should be brought to light
here.

Since the equation is being given on the command line, care must be taken when using characters
which have special meaning to the UNIX shell. It is advisable to enclose the expression portion in sin-
gle quotes to avoid unexpected results. These special characters include, among others:

*O>&|[]<

For instance, since the * character has special meaning to the UNIX shell, the expression in:
r.mapcalc newmap = elevation * 2

would be altered before being sent to the map calculator, and would result in error. Instead, using sin-
gle quotes around the expression portion:

r.mapcalc result = 'elevation * 2’

would let the UNIX shell know that any special characters should not be altered, and the expression
would be sent as is to the r.mapcalc command. (Without the use of single quotes around the expres-
sion portion, parentheses may also be misinterpreted, and, although the expression may be correct, the
message "Badly placed ()'s' would be given.)

The second thing to note about this type of usage of the r.mapcalc command is that if the result
map given on the command line is the name of a currently existing raster map layer, it is assumed that
the user wants to overwrite it, and the raster map layer will be overwritten without warning.

If the user wishes to input more than one equation, a different usage of the r.mapcalc command
would be logical. For this case, only the command name is given. A new (MAPCALC) prompt is then
provided, and eguations are entered one after another. All characters given are taken as is, and are not
modified by the UNIX shell. If the result raster map layer given at this MAPCALC prompt already
exists, the user is warned, and asked for a decision about overwriting it.

3.5. NEIGHBORHOOD MODIFIERS

Maps and images are database files stored in raster format, i.e.,, two-dimensional matrices of
integer values. In r.mapcalc, maps may be followed by a neighborhood modifier that specifies a rela-
tive offset from the current cell being evaluated. The format is map[r,c], where r is the row offset and
c is the column offset. For example, map[1,2] refers to the cell one row below and two columns to the
right of the current cell, map[-2,-1] refers to the cell two rows above and one column to the left of the
current cell, and map[0,1] refers to the cell one column to the right of the current cell. This syntax per-
mits the development of neighborhood-type filters within a single map or across multiple maps.

3.6. CATEGORY LABELSvs. CATEGORY VALUES

Sometimes it is desirable to use a value associated with a category’s contents instead of the
category value itself. If a raster map layer name is preceded by the @ operator, then the labels in the
category file for the raster map layer are used in the expression instead of the category value. For
example, if you specified "@elevation.dted" in an r.mapcalc equation, it would read the actual eleva
tion values for each category, rather than the category numbers themselves, which are simply scaled
between 1-255.

This use of the "@" symbol is different from that earlier described in the section Mapset Search
Paths. In that section, the "@" symbol is preceded by a GRASS map layer name, and is followed by
the name of a GRASS mapset. It is used to specify the use of a particular map layer (i.e., the named
map layer stored under the named mapset), rather than any other map layer of the same name stored
under any other mapset listed in the user’s mapset search path.

4, SAMPLE SESSION/EXAMPLES
This sample session can be replicated by running the GRASS within the location spearfish.

Commands that you are requested to enter are displayed in this document with the following for-
mat:

PROMPT:> your_command

Results that you should see after entering a command are displayed in this document with the following
format:

Some result displayed here

The PROMPT you see will depend on whether you are at the main GRASS 4.0 shell level, or whether

-9-

you have typed in the r.mapcalc command aone (without arguments) and are therefore at a MAP-
CALC prompt.

41. COMMAND-LINE EXAMPLES

Suppose that you have a raster map layer describing elevation in which the category values are
the true elevations. If you need to have a map layer which also depicts the elevation, but you want the
numbering to start at 1 (instead of at the minimum elevation value for that geographic region), you
could use the r.mapcalc command with a simple subtraction to create the new map. First, you should
find out the range of elevation values contained in the original map layer. This can be done using the
GRASS command r.describe.

GRASS 4.0> r.describe elevation.dem

READING [elevation.dem in PERMANENT] ... 100%
0 1066-1840

(Note that in the result section above, 100% is given after the statement about reading a map layer. As
the command is actually executing, this will start as 0% and be updated as the execution progresses.)

Since the minimum elevation value is 1066, you would subtract out 1065 to start the numbers in
the new map layer at 1.

GRASS 4.0> r.mapcalc new.elev = elevation.dem - 1065

PARSING EXPRESSION elevation.dem - 1065
EXECUTING new.elev = elevation.dem - 1065
complete: 100%

CREATING SUPPORT FILES FOR new.elev
minimum value -1065, maximum value 775

The map calculator has to first parse the expression given, and see if it makes sense mathemati-
caly. If the map calculator does not understand something (a function used is not known to the calcu-
lator, a parenthesis is unmatched, or the expression is mistyped), a message will be given that the calcu-
lator has been confused. |f the expression is understood, the calculations begin. The equation is calcu-
lated for each grid cell location in the current region, substituting the category value from that grid
location for each map layer name in the expression. Once all calculations are complete, the new map
layer is created, and the minimum and maximum values in the new map layer are reported.

Note that the output from the above command may not be the desired result. The grid cell loca-
tions which contained a "0" (no data) value in the original map layer now contain a value of -1065. To
obtain the desired result (renumbering the values to start at 1) without changing the cell values that
were originally 0, we will use a dightly more complex equation, given below. Single quotes should be
used around the expression. Otherwise, the UNIX shell tries to interpret the parentheses in a special
manner, and the command will not complete.

GRASS 4.0> r.mapcalc new.elev = ’if(elevation.dem,elevation.dem-1065)’

PARSING EXPRESSION if(elevation.dem, el evation.dem-1065)
EXECUTING new.elev = if(elevation.dem, elevation.dem-1065)
complete: 100%

CREATING SUPPORT FILES FOR new.elev

minimum value 0, maximum value 775

This form of the "if" command within the map calculator is interpreted as. if the category value
of "elevation" is non-zero, then set the result equal to "elevation-1065". Otherwise, set the result equal
to 0. Note that you were not asked if you desired to overwrite the cell file new.elev. The assumption is
that you do want to overwrite it.

-10 -

4.2. STANDARD INPUT EXAMPLES

Next we will perform a few more calculations, and to simplify the process, we will type the
r.mapcalc command alone without any accompanying equation, then entering our equations, one at a
time, at the MAPCALC prompt. (This will simplify the need for quotes around the expression portion
of the equation, and will warn us about overwriting raster files that already exist. Also, there will not
be a need to re-enter the command name each time, only the new equation.)

GRASS 4.0> r.mapcalc
MAPCALC>

A new (MAPCALC) prompt is given, and now we can enter equations one after another.

Suppose you would like a map layer depicting an area which has been severely flooded. We will
alter the elevation file from the spearfishdata set so that only elevations below 1200 feet will be
represented, assuming a flooding to 1200 feet. (This is a bit high for flooding, but will illustrate the
technique to be used.) Enter the following equation:

MAPCALC> new.elev = if(elevation.dem <=1200)

PARSING EXPRESSION if(elevation.dem<=1200)
new.elev - aready exists. ok to overwrite? [n] y
EXECUTING new.elev = if(elevation.dem<=1200)
complete: 100%

CREATING SUPPORT FILES FOR new.elev
minimum value 0, maximum value 1

The color assigned to category 1 should be made a blue color to represent the water level at this
elevation.

Note that since the equation is being entered at the MAPCALC prompt, a warning is given that
the map layer new.elev aready exists, and the choice is provided to overwrite or not. If you do not
wish to overwrite the map layer new.eley enter n in response to the question (or simply hit RETURN
to accept the default response of 'n” shown in brackets). Then you must re-enter the equation with a
new resulting map layer name.

Now, suppose we want to determine the depth of flooding.
MAPCALC> depth= if(new.elev,1200-elevation.dem)

PARSING EXPRESSION if(new.elev,1200-elevation.dem)
EXECUTING depth = if(new.elev,1200-el evation.dem)
complete: 100%

CREATING SUPPORT FILES FOR depth

4.3. CREATING NEW DATA LAYERS

In the spearfishdata set, raster map layers exist representing aspect and streams. It would be
interesting to display the streams file overlaid on the aspect map layer to see if the streams seem to line
up with changes in aspect direction. This could be done by displaying the aspectmap layer, and then
using the GRASS command d.rast -0 with the map layer streams. If you wanted to actually create a
new map layer representing the two map layers together, you could use r.mapcalc.

The aspect map layer contains 25 categories--24 directions of aspect, plus category 25 represent-
ing "no aspect”. (The category range of the aspect map layer can be obtained using the GRASS com-
mand r.describe.) We will create a new map layer retaining the 25 categories from the aspect map layer
and assigning the streams data to category number 26. Enter the following equation:

MAPCALC> aspect.str = if(streams,26,aspect)

-11 -

PARSING EXPRESSION if(streams,26,aspect)
EXECUTING aspect.str = if(streams,26,aspect)
complete; 100%

CREATING SUPPORT FILES FOR aspect.str
minimum value 0, maximum value 26
MAPCALC>

When the streams file contains a non-zero value, the new map layer is assigned a value of 26.
Otherwise, the new map layer receives the category value of the aspect map layer. The new map layer
aspect.strwill not have any assigned color table. One should be assigned using the GRASS command
r.support (probably the color table type labeled "Aspect"). For the streams (represented by category
26) to stand out againgt the rest of the map, the color for category 26 should then be altered. This can
be done using the d.colors program.

Hit the RETURN key now to return to the GRASS 4.0 prompt.

The next example will illustrate how r.mapcalc can be used to perform an analysis on various
raster map layers. Given the following information about the categories for map layers transport.misc,
roads, and railroads, an analysis can be done to represent all areas within the spearfish location where
transport lines are available.

map: Etransport. misc roads railroads
o EO No data 0 No data 0 No data
a 1 Power transmission 1 Interstate highway 1 railroad line
t 02 Landing strip 2 Primary highway, hard surface 2
e U 3 Secondary highway, hard surface
g B 4 Light duty road, improved surface
0 O 5 Unimproved road
ro
y B

We will say that transport lines are available when transport.mischas category value 2, when
roads has category values 1, 2, or 3, or when railroads has category value 1. The result raster map
layer (trans.avai) will have only the one category, denoting that one of the above was true and there-
fore a trangportation line of some sort is available. Since the equation for this is a little complicated, it
might be easiest to create a text file which can be used to provide the input to r.mapcalc. This makes
it easier to correct any typing errors. The file created for input is called map.input and is printed out
below using the UNIX command cat.

GRASS 4.0> cat map.input

trans.avail = transport.misc==2 || roads==1 || roads==2 || roads==3 || railroads==1

4.4. REDIRECTING INPUT

We will evaluate this equation using the redirected input format of the r.mapcalc command as
shown below.

GRASS 4.0> r.mapcalc < map.input

-12 -

PARSING EXPRESSION

transport.misc==2 || roads==1 || roads==2 || roads==3 || railroads==1
EXECUTING

trans.avail = transport.misc==2 || roads==1 || roads==2 || roads==3 || railroads==1
complete: 100%
CREATING SUPPORT FILES FOR trans.avail
minimum vaue 0, maximum value 1
EOF

Each test for equality (like "transport.misc==2") is a logical expression which evaluates to 0 or 1
(false or true). The tedts are joined with logical or’s, ||, so that the result of the expression will evaluate
to 1 if any one of the tests for equality is true. The resulting map layer transport.misc will be a zero-
one map, where category 1 represents the fact that one of the above conditions is true.

The r.mapcalc tool can be used to create map layers with new types of information, derived from
information contained in other map layers. Whenever an equation exists that calculates a value from
other values, r.mapcalc will be useful provided the original variables in the equation are available as
existing raster map layers. For instance, given a drainage accumulation map layer (where category
values represent the number of cells within a given watershed which would drain to the given grid loca-
tion) and a map layer depicting dope values, a map layer can be derived which approximates the distri-
bution of a topographic index characterizing the degree of saturation in the soil mantle. The index is
mathematically expressed as the

In (drainage_accumulation/tan(slope_magnitude))

An r.mapcalc statement expressing this mathematical formula can be written using the log and tan
functions. High saturation areas are flat and have large contributing areas. A drainage accumulation
file for a watershed within the spearfish location can be derived from elevation data using the GRASS
program r.watershed. A sope map layer can be derived from elevation data using the GRASS pro-
gram r.slope.aspect. A slope map should already be available in the spearfish database. You should
check to be sure thisis not a reclassed version of the slope map, but instead represents degrees of slope.
The slope map derived from the r.slope.aspect program reserves category O to represent "no data," and
S0 zero degrees is represented as category 1, one degree by category 2, and so on. In developing our
mathematical expression for r.mapcalc, we should therefore substitute "slope-1" for "dope" in the
equation given above. We do not want to subtract 1 when the slope map layer contains a zero value
(recall the example with elevation-1065), so we should use the expression "if(sope,sope-1)." The map
calculator for r.mapcalc represents the natural log by "log" (not "In"), so the expression would look
like: log(drain/tan(if(slope,slope-1))) for a drainage accumulation map layer named drain and a slope
map layer named slope The last adjustment to make is to take into consideration what happens when
either the drainage accumulation map layer or the sope map layer contains "no data’ (category value
0). Thiswould result in a calculated value that is negative and large. We will take care of this case of
evaluating using "no data' by eliminating all negative results of the equation (removing results
representing a negative soil saturation index). This can be done using the max function as shown
below. If the result of the expression is greater than zero, its result will be assigned to the new map
layer. However, if the result is less than zero, then zero will be the result of the max function. The
r.mapcalc equation used to produce this product map would be:

GRASS 4.0> r.mapcalc index.sat="max(0, log(drain / tan(max(0,dope-1))))’

PARSING EXPRESSION max(0, log(drain / tan(max(0,dope-1))))
EXECUTING index.sat = max(0, log(drain / tan(max(0,dope-1))))
complete: 100%

CREATING SUPPORT FILES FOR index.sat

minimum value 0, maximum value 12

-13-

You are now finished with the examples and the sample session. See the entry for r.mapcalc in
the GRASS User’s Reference Manual for additional examples. Unless you want to keep the new map
layers created with this tutorial, you may want to remove them now to conserve disk space.

5. CONCLUSIONS AND RECOMMENDATIONS

This manual is part of an ongoing process to document Geographic Resources Analysis Support System
(GRASS) program functions. It is one of many technology transfer mechanisms being implemented to
explain current, and future, GRASS program capabilities to resource managers and system users.

Documentation, along with training programs, hands-on use, a user-support center, newdetters, institu-
tional structures at the Army and interagency levels, communication networks, and other forums, can be
used to aid this ongoing technology transfer effort.

User feedback on GRASS program capabilities, documentation, and other technology transfer mechan-
isms is also needed. Users are encouraged to communicate such feedback to GRASS development staff
at USACERL, via existing electronic communication networks and via the GRASS Information Center
at USACERL, P.O. Box 9005, Champaign, IL 61826-9005; phone 217-373-7220; fax 217-373-7222; e
mail grassbug@zorro.cecer.army.mil.

REFERENCES

Ruiz, Marilyn S., and Jean M. Messersmith, Cartographic Issues in the Development of a Digital
GRASS DatabaseUSACERL Special Report N-90/16 (U.S. Army Construction Engineering
Research Laboratory [USACERL], September 1990).

Shapiro, Michael and James Westervelt, r.mapcalc: An Algebra for GIS and Image Processimyaft
ADP Report (USACERL, Summer 1992).

Westervelt, James, and William D. Goran, Introduction to GRASS,4Draft ADP Report (USACERL,
July 1991).

Westervelt, James, Mary Martin, and Deborah Brinegar, "GRASS 4.0 Programs,” in GRASS User’'s
Reference Manual, ADP Report N-87/22 rev (USACERL, September 1988, last revised
December 1991).

Westervelt, James, Michael Shapiro, William D. Goran, et al., GRASS User's Reference ManuaDP
Report N-87/22 rev (USACERL, September 1988, last revised December 1991).

