GRASS logo

Note: This document is for an older version of GRASS GIS that will be discontinued soon. You should upgrade, and read the current manual page.

NAME

r.covar - Outputs a covariance/correlation matrix for user-specified raster map layer(s).

KEYWORDS

raster, statistics

SYNOPSIS

r.covar
r.covar --help
r.covar [-r] map=name[,name,...] [--help] [--verbose] [--quiet] [--ui]

Flags:

-r
Print correlation matrix
--help
Print usage summary
--verbose
Verbose module output
--quiet
Quiet module output
--ui
Force launching GUI dialog

Parameters:

map=name[,name,...] [required]
Name of raster map(s)

Table of contents

DESCRIPTION

r.covar outputs a covariance/correlation matrix for user-specified raster map layer(s). The output can be printed, or saved by redirecting output into a file.

The output is an N x N symmetric covariance (correlation) matrix, where N is the number of raster map layers specified on the command line.

NOTES

This module can be used as the first step of a principle components transformation. The covariance matrix would be input into a system which determines eigen values and eigen vectors. An NxN covariance matrix would result in N real eigen values and N eigen vectors (each composed of N real numbers).

The module m.eigensystem in GRASS GIS Addons can be compiled and used to generate the eigen values and vectors.

EXAMPLE

For example,
g.region raster=layer.1 -p
r.covar -r map=layer.1,layer.2,layer.3
would produce a 3x3 matrix (values are example only):
     1.000000  0.914922  0.889581
     0.914922  1.000000  0.939452
     0.889581  0.939452  1.000000
In the above example, the eigen values and corresponding eigen vectors for the covariance matrix are:
component   eigen value               eigen vector
    1       1159.745202   <0.691002  0.720528  0.480511>
    2          5.970541   <0.711939 -0.635820 -0.070394>
    3        146.503197   <0.226584  0.347470 -0.846873>
The component corresponding to each vector can be produced using r.mapcalc as follows:
r.mapcalc "pc.1 = 0.691002*layer.1 + 0.720528*layer.2 + 0.480511*layer.3" 
r.mapcalc "pc.2 = 0.711939*layer.1 - 0.635820*layer.2 - 0.070394*layer.3" 
r.mapcalc "pc.3 = 0.226584*layer.1 + 0.347470*layer.2 - 0.846873*layer.3"
Note that based on the relative sizes of the eigen values, pc.1 will contain about 88% of the variance in the data set, pc.2 will contain about 1% of the variance in the data set, and pc.3 will contain about 11% of the variance in the data set. Also, note that the range of values produced in pc.1, pc.2, and pc.3 will not (in general) be the same as those for layer.1, layer.2, and layer.3. It may be necessary to rescale pc.1, pc.2 and pc.3 to the desired range (e.g. 0-255). This can be done with r.rescale.

SEE ALSO

i.pca, m.eigensystem (Addon), r.mapcalc, r.rescale

AUTHOR

Michael Shapiro, U.S. Army Construction Engineering Research Laboratory

SOURCE CODE

Available at: r.covar source code (history)

Latest change: Thu Oct 1 17:35:27 2020 in commit: 744fcaefa6aa37121e72a9530e90b48fa07bef3a


Note: This document is for an older version of GRASS GIS that will be discontinued soon. You should upgrade, and read the current manual page.

Main index | Raster index | Topics index | Keywords index | Graphical index | Full index

© 2003-2023 GRASS Development Team, GRASS GIS 7.8.8dev Reference Manual