
 The r.le Programs

A set of GRASS programs
for the quantitative analysis of landscape structure

Version 5.0

 November 1, 2001

William L. Baker
Department of Geography and Recreation

University of Wyoming
Laramie, Wyoming 82071 U.S.A.

BAKERWL@UWYO.EDU
(307)-766-2925

This set of programs was developed in part with funds from U.S. Department of Energy Grants
DE-FG02-89ER60883 and DE-FG02-90ER60977. This support does not constitute an
endorsement by DOE of the views expressed in this document.

2

TABLE OF CONTENTS

1. INTRODUCTION ... 3
1.1. Purpose of the r.le programs 3
1.2. Related software .. 3
1.3. Relationship of the r.le programs and GRASS 4
1.3. Overview of the r.le programs 4

2. THE r.le PROGRAMS .. 5
2.1. Operation ... 5
2.2. Data input .. 5

2.2.1. A caution about "0" data and “null” data 6
2.2.2. The GRASS mask 6

2.3. The r.le.setup program 6
2.3.1. Sampling .. 7
2.3.2. Group/class limits 13
2.3.3. Color table 15

2.4. Syntax for the r.le analysis programs 16
2.5. The r.le.dist program 16

2.5.1. Syntax for the r.le.dist program 17
2.5.2. Examples of the use of the r.le.dist program 20

2.6. The r.le.patch program 22
2.6.1. Syntax for the r.le.patch program 22
2.6.2. Examples of the use of the r.le.patch program ... 30

2.7. The r.le.pixel program 32
2.7.1. Syntax for the r.le.pixel program 32
2.7.2. Examples of the use of the r.le.pixel program ... 38

2.8. The r.le.trace program 39
3. GLOSSARY ... 41
4. BIBLIOGRAPHY ... 43
5. Table 1: Measures that can be calculated by the r.le programs 45
7. APPENDICES ... 49

1. Limits ... 50
2. Time needed to complete analyses with the r.le programs 51
3. Examples of r.le.setup files 52
4. Help menus for the r.le programs 54
5. Testing and a warning 60

3

1. INTRODUCTION

1.1. Purpose of the r.le programs

Landscape ecology is a multi-disciplinary pursuit, involving geographers, biologists,
sociologists, remote sensors, and many others. The focus of landscape ecology is on the
dynamics and structure of the biosphere, including human activities, on the scale of hundreds
of meters to kilometers (Risser et al. 1984; Forman and Godron 1986; Urban et al. 1987,
Forman 1995). The science of landscape ecology expanded rapidly in the 1980s, and methods
for the quantitative analysis of landscape structure also were developed (e.g. Mead et al. 1981;
Gardner et al. 1987; Krummel et al. 1987; Milne 1988). The r.le programs have been designed
to provide software for calculating a variety of common quantitative measures of landscape
structure. The programs can be used to analyze the structure of nearly any landscape.

1.2. Related software (SPAN & FRAGSTATS)

There are other programs available that also can be used to calculate landscape level
indices. The first main program is SPAN (Turner 1990). SPAN was developed for landscape
ecological analyses and has been widely utilized. It offers a set of measures related to cover,
edge, size, fractal dimension, adjacencies, diversity, and texture. SPAN is a stand-alone
program not integrated inside a GIS and it has a more limited set of measures than either
FRAGSTATS or the r.le programs. It has been distributed by Monica Turner at Oak Ridge
National Laboratory, now at the University of Wisconsin, Madison.

Another program is FRAGSTATS (McGarigal and Marks 1994). This software is
available over the Internet (www.fsl.orst.edu/lter/data/software/fragstat.htm). FRAGSTATS has
several advantages and limitations compared to the r.le programs. First, FRAGSTATS is
available for use with ARC/INFO files directly, and it also accepts data in several raster forms
(ASCII, 8/16 bit binary, ERDAS image files, and IDRISI image files). The program runs on
UNIX workstations or a PC. The r.le programs can also be used to analyze data from ERDAS,
ARC/INFO, or other systems. The GRASS i.in.erdas, r.in.arc, r.in.gdal, v.in.arc, v.in.ascii,
r.in.tiff programs and other programs can be used to import data from many sources prior to the
use of the r.le programs. Most of the indices in FRAGSTATS are also available in the r.le
programs or can be calculated from r.le output, but FRAGSTATS has a richer array of core
area metrics and an index called "proximity" (Gustafson and Parker 1992). FRAGSTATS also
offers a nice feature for dealing with patches on the edge of a map. Otherwise there is
considerable overlap in the indices available in the two programs. The r.le programs offer a
flexible sampling overlay system that is useful in analyzing irregular land areas or in obtaining a
sample. The user can distribute sampling areas over a part of the landscape, or calculate
indices for separate, irregularly-shaped regions, or sample only in the vicinity of point
observations (e.g., wildlife observations). FRAGSTATS operates only on the rectangular land
area actually input to the program, although the user can code parts of this area for analysis.
The r.le programs also can output new maps showing the location of particular types of edges
and the sampling area framework. More significant, it is now possible to use the r.le programs
to make a new map in which the original cell attribute is replaced by a particular attribute (e.g.,
patch size) of the patch in which the pixel occurs. This is very useful in wildlife habitat
modelling. Finally, in terms of sampling, the r.le programs allow the user to run a moving
window of any size across the map to make a new map of landscape structure. This also is
useful in wildlife habitat modeling. Perhaps the most significant feature of the r.le programs,

4

compared to FRAGSTATS, is that the r.le programs are embedded in the GRASS GIS. Many
features of GRASS offer powerful complements to the r.le programs. It is possible, for
example, to immediately overlay a moving window output map from the r.le programs on top of
a digital elevation model to illustrate how landscape structure varies across a topographic
surface. Additional comparison of the two programs is in Baker (2000).

1.3. Relationship of the r.le programs and GRASS

The r.le programs are intended to be part of the Geographical Resources Analysis
Support System (GRASS), a public-domain geographical information system (GIS) supported
by a worldwide network of developers and users. GRASS is primarily a raster-based GIS, but
with extensive vector handling capabilities. GRASS operates under several versions of the
UNIX operating system, under LINUX, and there is now a version for Windows. The r.le
programs currently use GRASS version 5.0. The r.le programs directly use GRASS libraries
and the GRASS data structures in the calculation of measures of landscape structure, and use
GRASS for the entry of digitized data. GRASS also provides a number of separate image
processing, data manipulation, and mapping programs which can be useful for preparing data
for analysis with the r.le programs and for displaying output. See the GRASS web page at
http://www.geog.uni-hannover.de/grass (may change to http://grass.itc.it) for more information.

1.4. Overview of the r.le programs

The r.le programs are designed for analyzing landscapes composed of a mosaic of
patches, but, more generally, these programs are capable of analyzing any two-dimensional
raster or array whose entries are integer (e.g., 1, 2) or floating point (e.g., 1.1, 3.2) values. The
r.le programs have options for controlling the shape, size, number, and distribution of sampling
areas used to collect information about the landscape. Sampling area shapes can be square,
or rectangular with any length/width ratio or can be circular with any radius. The size of
sampling areas can be changed, so that the landscape can be analyzed at a variety of spatial
scales simultaneously. Sampling areas may be distributed across the landscape in a random,
systematic, or stratified-random manner, or as a moving window.

The r.le programs can calculate a number of measures that produce single values as
output (e.g. mean patch size in the sampling area), as well as measures that produce a
distribution of values as output (e.g. frequency distribution of patch sizes in the sampling area)
(Table 1), and it is also possible to output tables of data about selected attributes (e.g., size,
shape, amount of perimeter) of individual patches. The programs include no options for
graphing or statistically analyzing the results of the analyses. External software must be used.
The programs were developed under Mandrake 8.0 Linux on an Intel workstation using the Gnu
C compiler. The code is written in the C programming language, and makes use of functions
provided in the GRASS programmers' library.

5

2. THE r.le PROGRAMS

2.1. Operation

To run the r.le programs, the user must first start GRASS and set up the working
environment in GRASS by specifying the GRASS location and map layers to be used. The
sequence of operations usually is to first use r.le.setup to set up a sampling framework (e.g.,
regions, sampling area size and shape, etc.) and then use the other r.le programs (e.g.
r.le.pixel, r.le.patch, r.le.dist) to make the desired measurements. The r.le.setup program does
not need to be run if the analysis will be of the full extent of the current GRASS region. All of
the r.le programs operate from the GRASS command prompt (>). The commands and their
parameters are entered after the GRASS command prompt, and the programs then go through
a sequence of operations to complete the setup and measurements. Output from r.le.setup
goes in the subdirectory "r.le.para" while output from the other r.le programs goes in the
subdirectory "r.le.out". These subdirectories are created automatically when the programs are
invoked, and are made subdirectories within the directory from which the programs are run.
Some programs also can be used to make new maps, which become part of the maps stored in
the current location and mapset (use “g.list rast” to see the names of raster maps).

2.2. Data input

The r.le programs work directly with map layers that have been input and preprocessed
in GRASS. Data from satellites can be downloaded into GRASS using the image processing
programs in GRASS. GRASS also has programs for reading files produced by ERDAS and
ARC/INFO, and for reading ASCII raster files, TIFF files, Sun raster files, and several other
formats. Vector information can be input using the GRASS digitizing programs or from other
GIS programs (e.g., ESRI shapefiles). Vector information must be converted to raster data
using the GRASS program "v.to.rast" prior to using the r.le programs. Preprocessing
capabilities of GRASS include programs to rectify imagery so that it matches a planimetric map
and programs for classifying raw multi-band data.

The r.le programs were conceived for analyzing maps of patches. Any raster map can
be considered to contain patchiness and can be analyzed using the programs, but a variety of
landscape data can be more specifically considered "patch" data. Patches may be disturbance
patches, remnant patches, environmental resource patches, introduced patches, or simply
patchy entities on a map (Forman and Godron 1986, Forman 1995). Patches may simply be
landscape elements (Forman 1995), such as roads, dwellings, forest patches, grassland
patches, hedgerows, or fields. Patches could also be types of forest in a forested landscape
(e.g. deciduous forest, recently-burned forest, conifer forest), or types of grassland in a prairie
landscape. Patches of different age occur in landscapes subject to disturbances (e.g. fires,
floods), where the age of the patch represents the time since it was last disturbed. Patches
could also be the types identified by completing a classification of spectral data in a Landsat
image, or in a scanned aerial photograph. In general, patches are simply the result of grouping
pieces of the landscape into units whose members share a common set of attributes.

6

2.2.1. A caution about "0", null data, and large background patches

GRASS 5.0 was developed in part to treat zero (0) as a real integer value. In earlier
versions of GRASS, zero was considered to mean “no data.” The r.le programs now treat zero
as a real integer or floating-point value in all calculations. Raster cells that contain “0" are
included in all calculations and are included when the moving window is centered over them.
If the user intends that cells with the attribute “0" are to be excluded from calculations, then
these cells should be reclassified as null, instead of 0, using the GRASS r.null program, as r.le
now follows the GRASS 5.0 convention of treating null values as representing “no data.”

One purpose for having a patch with the attribute “0" (zero) is to have a background or
matrix patch in which the other patches are embedded. If the user desires information about
this matrix patch, then it can be given the attribute “0" or any other integer or floating-point
value, and the patch will be traced just like any other patch. However, these matrix patches can
be very large and complex, and this may cause the r.le programs to run out of memory while
tracing the complex boundary. If the user does not need information on the matrix patch itself,
then it would be most efficient to recode the attribute of the matrix patch to “null” using the
GRASS r.null command before running the r.le programs. Patches with null attributes are not
traced, and are not included in the calculation of summary statistics (e.g., mean, standard
deviation).

2.2.2. The GRASS mask

GRASS has a mask command (r.mask) that can be used to limit the parts of a map that
are included in an analysis. The r.le analysis programs do respond to a mask if it is present,
and the results of analyses will be limited to the area specified as "1" in the MASK file.
Moreover, when the moving window sampling method is used, the moving window will only
move through the area of the map that is specified as "1" in the MASK file. This can
considerably speed up the moving window operation, if the masked area is a small part of the
map.

2.3. The r.le.setup program

The r.le.setup program is used to setup the sampling and analysis framework that will
be used by the other r.le programs. Before you run r.le.setup, be sure to back up files you
already have made in the r.le.para subdirectory using r.le.setup in previous sessions, as the
program will overwrite them! To run r.le.setup with GRASS do the following:

1. After starting GRASS and setting up your location and mapset, start a GRASS
monitor window using the d.mon command.

2. Move the cursor back to the command window with the GRASS command prompt (>).
3. Type r.le.setup followed by a carriage return. This program runs only interactively.
4. You will now be queried for (1) the name of the map to be used as a backdrop for

setting up the sampling scheme, (2) the name of a vector map to overlay on the
raster map to aid in placing the sampling areas (optional), and (3) the name of a
sitefile to overlay on the raster map to aid in placing the sampling areas
(optional). These maps must already exist to be used here.

5. The raster map and overlay maps, if chosen, will be displayed and you will see the

7

Figure 1

main r.le.setup menu.

The first menu allows the user to draw sampling regions, setup a sampling frame, setup
sampling units or a moving window, setup limits for groups and classes, change the color table
for the backdrop raster map, or exit and save the results of the setup.

2.3.1. Sampling

Information about the structure of the landscape is obtained by overlaying a set of
sampling areas on top of a specified part (the sampling frame of a map layer, and then
calculating specific structural measures for the part of the map layer that corresponds to the
area in each sampling area (Fig.1).

To setup a sampling frame
type 2 to “Setup a sampling frame.”
The program will ask "Will the sampling
frame (total area within which sampling
units are distributed) be the whole map?
(y/n) [y]" Just hit a carriage return to
accept the default (in brackets), which is
to use the whole map. You actually do
not need to setup a sampling frame if
you want to use the whole map, as this
is the default. To setup a different
sampling frame type "n" and a carriage
return in response to this question.
Then use the mouse and a rubber band
box to outline a rectangular sampling
frame on screen. You will be asked last
whether you want to "Refresh the
screen before choosing more setup?" If
you don't like the sampling frame you
just created, answer yes to this
question, then type 2 (“Setup a
sampling frame”) again to redo this part
of the setup. This sampling frame will
be used to limit the spatial extent of all
subsequent setup procedures.

A sampling area may be one of four things (Fig. 2). First, it is possible to treat the
entire map layer as the one (and only) sampling area. Second, if the map layer can be divided
into meaningful geographical regions (e.g., watersheds), then it is possible to treat the regions
themselves as sampling areas. The third option is that the sampling areas may be sampling
units of fixed shape and size (also called scale) that are placed within the map layer as a whole.
The fourth and final option is that the sampling area may be moved systematically across the
map as a moving window. The following sections present additional details about these options
for sampling areas.

8

2.3.1.1. Whole map layer

If the whole map layer is to
be used as the one and only
sampling area (Fig. 2), then
r.le.setup does not need to be run.
The user may complete an analysis
by simply entering the appropriate
r.le command. The user can
specify sam=w, but this is the
default, so the sam= parameter can
simply be omitted.

2.3.1.2. Regions

If regions are to be used as
the sampling areas (Fig. 2), then
the user can use r.le.setup to draw
regions, or any existing map of
regions can simply be used directly.
To draw regions and create a new
regions map in r.le.setup select
"Draw sampling regions" from the first r.le.setup menu, and the user is asked to do the
following:

1. "ENTER THE NEW REGION MAP NAME:" Only a new raster map name is
acceptable. The user can type LIST to find out the existing raster map
names in this location and mapset.

2. “CHOOSE AN OPTION:”
Draw a region 1
Quit drawing regions and return

to setup options menu 2
Change the color for drawing 3

If you type 1 to “Draw a region” you will receive instructions on how to use the mouse to draw
the region on the screen. Once the region is drawn, you can draw another region, start over,
quit drawing and save the region map (or don’t save it). You can also change the color for
drawing, if you’re having trouble seeing the boundaries you are drawing.

Once the "Quit drawing and save the region map" option is selected, the new raster map of the
sampling regions is generated and displayed on the monitor window, and you are asked if you
want to refresh the screen before choosing more setup. Note that you cannot draw regions in
areas outside the mask, if a mask is present (see r.mask command).

The user can also use the GRASS r.digit or v.digit programs to digitize circular or
polygonal regions and to create a sampling regions map without using r.le.setup. Or, as
mentioned above, an existing raster map can be used directly as a regions map.

9

2.3.1.3. Sampling units

If sampling units are to be used as the sampling areas (Fig. 2), then choose 3 for "Setup
sampling units" from the first r.le.setup menu. The program checks the r.le.para subdirectory
for an existing "units" file from a previous setup session and allows the user to rename this file
(to save it) before proceeding. The r.le.setup program will otherwise overwrite the "units" file.
Then the following choice is displayed followed by a series of other choices:

HOW WILL YOU SPECIFY SAMPLING UNITS?
Use keyboard to enter sampling unit dimensions 1
Use the mouse to draw sampling units 2

Which number?

When sampling units are defined using the keyboard, the user inputs the shape and
size (scale) of the sampling units by specifying dimensions in cells using the keyboard. When
sampling units are drawn with the mouse, the user clicks the mouse to define the sampling
units in the GRASS monitor window, and then actually places the sampling units for each scale
onto the map. By placing the units with the mouse the user can directly determine the method
of sampling unit distribution as well as the shape, size, and number of sampling units.

If the choice is made to use keyboard to enter sampling unit dimensions, the
following series of questions must be answered:

How many different SCALES do you want (1-15)?

The user is asked to specify the number of scales that will be used. The r.le programs
allow the user to simultaneously sample the same map with the same measures using sampling
areas of different sizes (scales). There can be between 1 and 15 scales that can be sampled
simultaneously. Substantial output can be produced if many scales are used.

Methods of sampling unit distribution

Sampling units must be placed spatially into the landscape. There are five options for
doing this, but only one option can be chosen for each scale (Fig. 2):

1. Random nonoverlapping: Sampling units are placed in the landscape by randomly
choosing numbers that specify the location of the upper left corner of each
sampling unit, subject to the constraint that successive sampling units not
overlap other sampling units or the edge of the landscape, and that they must be
entirely within the area defined by the mask (see r.mask command) if one exists.

2. Systematic contiguous: Sampling units are placed side by side across the rows. The

user will be able to enter a row and column to indicate where the upper left
corner of the systematic contiguous framework should be placed. Rows are
numbered from the top down beginning with row 1 of the sampling frame.
Columns are numbered from left to right, beginning with column 1 of the
sampling frame. A random starting location can be obtained by using a standard

10

random number table to choose the starting row and column. The r.le.setup
program does not avoid placing the set of sampling units over areas outside the
mask. The user will have to make sure that sampling units do not extend outside
the mask by choosing a particular starting row and column or by drawing a
sampling frame before placing the set of sampling units.

3. Systematic noncontiguous: The user must specify the starting row and column as in
#2 above and the amount of spacing (in cells) between sampling units.
Horizontal and vertical spacing are identical. Sampling units are again placed
side by side (but spaced) across the rows. As in #2 the program does not avoid
placing sampling units outside the masked area; the user will have to position the
set of units to avoid areas outside the mask.

4. Stratified random: The strata are rectangular areas within which single sampling units
are randomly located. The user must first specify the starting row and column as
in #2 above. Then the user must specify the number of strata in the horizontal
and vertical directions. As in #2 the program does not avoid placing sampling
units outside the masked area; the user will have to position the set of units to
avoid areas outside the mask.

5. Centered over sites: The user must specify the name of a sitefile containing point
locations. A single sampling unit is placed with its center over each site in the
site file. This is a useful approach for determining the landscape structure
around points, such as around the location of wildlife observations.

Do you want to sample using rectangles
 (Including squares) (y) or circles (n)? (y/n) [y]

If you choose rectangles, then the following series of questions must be answered:

Sampling unit SHAPE (#cols/#rows) expressed as a real number
(e.g., 10 cols/5 rows = 2.0) for sampling units of scale n?

The user is prompted to enter a ratio that defines the shape of the sampling units.
Sampling units may have any rectangular shape, including square as a special case of
rectangular. Rectangular shapes are specified by entering the ratio of columns/rows (horizontal
dimension/vertical dimension) as a real number. For example, to obtain a sampling unit 10
columns wide by 4 rows long specify the ratio as 2.5 (10/4).

Recommended maximum SIZE is m in xx cell total area.
What size (in cells) for each sampling unit of scale n?

The user is then given the recommended maximum possible size for a sampling unit (in
cells) and asked to input the size of sampling units at each scale. Sampling units can be of any
size, but the maximum size is the size of the landscape as a whole. All the sampling units, that
make up a single sampling scale, are the same size. After specifying the size, the program
determines the nearest actual number of rows and columns, and hence size, that is closest to

11

the requested size, given the shape requested earlier.

The nearest size is x cells wide X y cells high = xy cells
Is this size OK? (y/n) [y]

If you choose circles, then you will be asked to specify the radius, in cells. Once you have
addressed the questions associated with rectangles or circles, you can continue with the
following questions:

Maximum NUMBER of units in scale n is p?
What NUMBER of sampling units do you want to try to use?

The maximum number of units that can be placed over the map, given the shape and
size of the units, is then given. The user can then choose the number of sampling units to be
used in the map layer. It may not always be possible to choose the maximum number,
depending upon the shape of the sampling units. In the case of systematic contiguous and
noncontiguous, the program will indicate how many units will fit across the columns and down
the rows. The user can then specify a particular layout (e.g., 6 units could be placed as 2 rows
of 3 per row or as 3 rows of 2 per row).

Is this set of sampling units OK? (y/n) [y]

Finally, the set of sampling units is displayed on the screen (e.g., Fig. 1), and the user is
asked whether it is acceptable. If the answer is no, then the user is asked if the screen should
be refreshed before redisplaying the menu for "Choose method of sampling unit
DISTRIBUTION," so that the user can try the sampling unit setup again.

If the choice is made to use the mouse to draw sampling units, then the following
menu for use with the mouse is displayed after the user specifies the number of scales and
whether rectangles or circles will be used:

Draw a standard (rectangular/circular) unit of scale n.
First select upper left corner, then lower right:

Left button: Check unit size
Middle button: Upper left corner of unit here
Right button: Lower right corner of unit here

The user can then use the mouse and the rubber band box to outline the standard sampling
unit. Once it has been outlined, the number of columns and rows in the unit, the ratio of
width/length and the size of the unit, in cells, will be displayed. After this first unit is outlined,
then a new menu is displayed:

Outline more sampling units of scale n?
Left button: Exit
Middle button: Not used
Right button: Lower right corner of next unit here

12

The user can then place more units identical to the standard unit by simply clicking the right
mouse button where the lower right corner of the unit should be placed. The rest of the rubber
band box can be ignored while placing additional units. The program is set up so that units
cannot be placed so they overlap one another, so they overlap the area outside the mask, or so
they overlap the edge of the sampling frame. Warning messages are issued for all three of
these errors and a sampling unit is simply not placed.

2.3.1.4. Moving window:

Using this procedure a rectangular "window" or single sampling area is moved
systematically across the map to produce a new map (Fig. 2, 3). This sampling procedure can
only be used with the measures that produce a single value or with a single class or group
when measures produce distributions of values (Table 1). The first class or group specified
when defining class or group limits (section 2.3.2.) is used if distributional measures are chosen
with the moving window sampling method. In this case, the user should manually edit the
r.le.para/recl_tb file so that the desired group is listed as the first group in this file.

Sampling begins with the upper left corner of the moving window placed over the upper
left corner of the sampling frame. It is strongly recommended that the user read the section on
the GRASS mask (section 2.2.2) prior to setting up the moving window, as this mask can be
used to speed up the moving window operation. The value of the chosen measure is calculated
for the window area. This value is assigned to the location on the new map layer corresponding
to the center cell in the window if the window has odd (e.g. 3 X 3) dimensions. The value is
assigned to the location on the new map layer corresponding to the first cell below and to the
right of the center if the window has even dimensions (e.g 6 X 10). If this cell has the value
"null" which means "no data" in GRASS, then this cell is skipped and a value of "null" is
assigned to the corresponding location in the new map. The window is then moved to the right

(across the row) by one cell,
and the process is repeated.
At the end of the row, the
window is moved down one
cell, and then back across
the row. This option
produces a new map layer,
whose dimensions are
smaller by approximately (m-
1)/2 rows and columns,
where m is the number of
rows or columns in the
window.

If the “Setup a
moving window" option in
the main menu is selected,
first the program checks for
an existing "move_wind" file,

in the r.le.para subdirectory, containing moving window specifications from a previous session.
The user is given the option to avoid overwriting this file by entering a new file name for the old
"move_wind" file. The user is then prompted to choose between the following:

Use keyboard to enter moving window dimensions 1

13

Use the mouse to draw the moving window 2

If you choose 1, you will next be asked whether you want to use a rectangle or a circle for the
moving window, then to enter the shape and size (rectangle) or radius (circle). If you choose 2,
then the functions of the three mouse buttons are displayed. The moving window is defined in
the same way as a sampling unit. Once defined, it will be displayed in the upper left corner of
the sampling frame, not where you drew it.

Users should be aware that moving window analyses are very slow, because a large
number of sampling units are, in effect, used. See the appendix on "Time needed to complete
analyses with the r.le programs" for some ideas about how moving window size and sampling
frame area affect the needed time to complete the analyses.

2.3.2. Group/class limits

The r.le programs r.le.dist and r.le.patch allow the attribute categories in the input map
to be reclassed into several attribute groups, and can then report the analysis results by each of
these attribute groups. It is necessary to setup group limits for all measures that say "by gp"
when typing "r.le.dist help" or "r.le.patch help" at the GRASS prompt. The same reclassing can
be done with the measurement indices (e.g., size), except that each "bin" (class) of the
reclassed indices is called an index class instead of a group. It is also necessary to setup class
limits for all measures that say "by class" when typing "r.le.dist help" or "r.le.patch help" at the
GRASS prompt.

Group/class limits are setup by choosing "Setup group or class limits" from the main
menu upon starting r.le.setup, or you can create the files manually using a text editor. The
program checks for existing group/class limit files in subdirectory r.le.para and allows the user
to rename these files prior to continuing. If the files are not renamed, the program will overwrite
them. The files are named recl_tb (attribute group limits), size (size class limits), shape_PA
(shape index class limits for perimeter/area index), shape_CPA (shape index class limits for
corrected perimeter/area index), shape_RCC (shape index class limits for related
circumscribing circle index), and from_to (for the r.le.dist program distance methods m7-m9). If
you want to create these files manually, rather than using r.le.setup, refer to the appendix on
"r.le.setup file formats."

Attribute groups and index classes are defined in different ways. In the r.le programs
attribute groups are defined as in the following example:

1, 3, 5, 7, 9 thru 21 = 1 (comment)
31 thru 50 = 2 (comment)
end

In this example, the existing categories 1, 3, 5, 7, {9, 10, ... 20, 21} are included in the new
group 1, while {31, 32, 33, ..., 49, 50} are included in the new group 2. The characters in bold
are the "key words" that are required in the definition, but you don’t have to actually type them
in bold font. Each line is called one "reclass rule.” You can include a comment in parentheses.

When using r.le.dist with methods di1=m7, m8, or m9 you must first set up a "from_to"
file in the r.le.para subdirectory. This file contains the number of the attribute group to measure
from and the number of the attribute group to measure to. The "from_to" file can be setup
using r.le.setup under the “Setup group or class limits” option in the main menu. After selecting
this option, put an "x" in front of "From and To groups for di1=m7, m8, or m9" and follow the
directions. The "from" and "to" groups are defined in a slightly different way, as in the following

14

example:

1, 3, 5, 7, 9 thru 21 end (comment)

Here, the key word "end" is at the end of the line instead of in a new line. This rule is only used
in the definition of the "from" and "to" attribute groups, because in this case both groups have
one and only one reclass rule.

The GRASS reclass convention is adopted here with a little modification (see "r.reclass"
command in the GRASS User's Manual). The difference is that r.le only allows one rule for
each group while the GRASS r.reclass command allows more than one. The definition of "from"
and "to" groups is simply the extension of the GRASS reclass rule. The advantage of using the
GRASS reclass convention is that the user can generate a permanent reclassed map, using the
GRASS r.reclass and r.resample programs, directly from the r.le setup files mentioned above.

The r.le measurement index classes are defined by the lower limits of the classes, as in
the following example:

0.0, 10.0, 50.0, 200.0, -999

This means:
if v >= 0.0 and v < 10.0 then v belongs to index class 1;
if v >= 10.0 and v < 50.0 then v belongs to index class 2;
if v >= 50.0 and v < 200.0 then v belongs to index class 3;
if v >= 200.0 then v belongs to index class 4;

where v is the calculated index value and -999 marks the end of the index class
definition. The measurement index can be the size index, one of the three shape indices, or one
of the three distance indices.

The program is currently designed to allow no more than 25 attribute groups, 20 size
classes, 25 shape-index classes, and 25 distance-index classes. As an alternative, the user
may want to permanently group certain attributes prior to entering the r.le programs. For
example, the user may want to group attributes 1-10, in a map whose attributes are ages, into a
single attribute representing young patches. The user can do this using the GRASS r.reclass
and r.resample commands, which will create a new map layer that can then be analyzed
directly (without setting up group limits) with the r.le programs.

If you want to calculate indices for each of the existing attributes in a raster map, you
still need to set up group and class limits. However, in this case the groups would be defined to
have a 1:1 relationship with the attributes, as in the following example where there are only 3
attributes in the raster map:

1.5 = 1
2.0 = 2
3.2 = 3
end

This will allow “by gp” measures to output index values for attributes 1.5, 2.0, and 3.2
separately.

15

2.3.3. Color table

The user may want to change the color table for the map in the GRASS monitor window
to make the sampling areas, cursor, and rubber band more visible. There are several different
color tables that can be tried until a suitable one is found. Note that if you choose one of the
other color tables from the menu, the color table for that GRASS raster map gets changed. To
change it back to what it was originally, select "Set original color table" from the color table
menu.

If the "Change the raster map color table" option in the main menu is selected, a menu
titled "SELECT NEW COLOR TABLE FOR RASTER MAP" is displayed that has the following
options:

"Aspect": generate a color table for aspect data.
"Color ramp": generate a color table with 3 sections: red only, green only, and blue only,

each increasing from none to full intensity. This table is good for continuous data
such as ages.

"Color wave": generate a color table with 3 sections: red only, green only, and blue
only, each increasing from none to full intensity and back down to none. This
table is good for continuous data like ages.

"Linear grey scale": generate a grey scale color table. Each color is a level of grey,
increasing from black to white.

"Rainbow colors": generate a color table based on rainbow colors. the table generated
here uses yellow, blue, indigo, violet, red. This table is good for continuous data
such as ages.

"Random colors": generate random colors. Good as a first pass at a color table for
nominal data. This option generates different color combinations for the color
table each time. Therefore it can be used repeatedly until the satisfactory colors
are displayed.

"Red-Yellow-Green sequence": generate a color table similar to that of "RAINBOW",
except that the table starts at red, passes through yellow, and ends with green.

"Green-Yellow-Red sequence": generate a color table similar to that of "RAINBOW",
except that the table starts at green, passes through yellow, and ends with red.

"Set original color table": assign the original color table to the input cell map if none of
the above options improves the display during setup.

“Return to setup options menu”

After one of these options is selected, the menu titled "CHOOSE NEXT OPTION" is displayed
that has the following options:

Don’t save color table just chosen:
Return to color table menu 1
Return to setup option menu 2
Exit r.le.setup 3

Do save color table just chosen:
Return to setup options menu 4
Exit r.le.setup 5

Which number?

16

2.4. Syntax for the r.le analysis programs

The r.le analysis programs include r.le.dist, r.le.patch, and r.le.pixel. These programs
are designed to do landscape ecological analyses by computing the spatial measures selected
from the measure list available with each program. Each program will be explained in the
following sections. All three r.le analysis programs can be started at the GRASS prompt (>)
using either a command-line or interactive method. To invoke the command-line help menu,
type the name of the program, a space, and the word "help" (e.g. r.le.pixel help).

The interactive version of each program is invoked by simply typing the command
followed by a carriage return. The GRASS parsing routine will then ask the user to answer
questions and specify parameter values. The possible parameter values are listed along with a
brief summary of their meanings.
 The command-line version of each program is invoked by typing the name of the
program, followed by a list of parameters and parameter values, on the command line, followed
by a carriage return. Each command-line parameter is described briefly in help menus for each
of the programs.

An example of command syntax is:

r.le.patch map=testmap co1=2 co2=c1 -c

2.5. The r.le.dist program

The r.le.dist program can be used to measure distances between patches and report
those distances using several methods. See section 2.4. for an explanation of how to start the
r.le.dist program.

2.5.1. Syntax for the r.le.dist program

The syntax for the command-line version and the parameters for both interactive and
command-line versions are as follows:

r.le.dist [-bntu] map=name [sam=name] [reg=name] [ski=value] [can=value]
[di1=name[,name,...]] [di2=value[,...]] [out=name]

where:
brackets [] indicate optional parameters or values
-n is a flag to request an output map showing the patch number. This number is

the number assigned sequentially as the program traces the patches. It
is also the number that is displayed in the individual patch measure
output file specified with the "out" parameter.

-t is a flag to request 4-neighbor tracing instead of the default 8-neighbor tracing.
4-neighbor tracing adds a cell to a patch only if it is in the same row or
column as the current cell while tracing proceeds. 8-neighbor tracing
adds cells to a patch if they are among the surrounding 8-neighboring
cells.

-u is a flag to request output maps showing the sampling units that were setup
for each scale using r.le.setup.

17

map is the GRASS raster map to be analyzed. This raster map must be
available in the user's working GRASS database (/location/mapset/),

sam is the kind of sampling area: w, u, m, or r, where w=whole map, u=sampling
units, m=moving window, or r=regions.

reg is the name of the regions map to be used when sam=r,

ski is to specify whether to skip some points when searching along the patch
boundary. This is used to speed up the distance calculations.

ski <= 0 means don't skip;
ski > 0 means:

if np > ski + 50 - search every other boundary point;
if np > ski + 200 - search every third boundary point;
if np > ski + 500 - search every fourth boundary point;
if np > ski + 2000 - search every fifth boundary point;

where np is the number of total boundary cells of a patch. This is
effective with the center-edge and edge-edge distance
measures. Default is ski = 0, and maximum value is 10.

can is the maximum number of candidate patches on the nearest-neighbor-list
when searching for the nearest neighbor patch. It means when searching
for the nearest patch of a particular patch, find can "close" patches first
using a simple method, then find out the nearest patch from these can
candidate patches with point-by-point calculation. The legal range of can
is 1-30. If can < 1, can = 1; if can > 30, can = 30. The default value is
can = 30.

di1 is the distance method. Distance can be measured and summarized in a
variety of ways: (1) from each patch in the sampling area or only from
patches belonging to a specific attribute group (gp), (2) to all adjacent
neighboring patches or only to the single nearest neighbor patch, (3)
regardless of the group of the neighbor or only to patches belonging to a
specific group, (4) from center to center, from center to edge, or from
edge to edge. See the explanation below about how these distances are
calculated. There are nine combinations of these that represent choices
for di2 (some examples are illustrated in Fig. 4):

From each patch in the sampling area

to all the adjacent neighbors of the patch
m0 = Distance is center-center
m1 = Distance is center-edge

to the nearest patch of the same gp
m2 = Distance is center-center
m3 = Distance is center-edge
m4 = Distance is edge-edge

to the nearest patch of any different gp
m5 = Distance is center-center
m6 = Distance is center-edge

18

 From each patch of a specific gp
to the nearest patch of a specific gp

m7 = Distance is center-center
m8 = Distance is center-edge
m9 = Distance is edge-edge

In the case of m7 to m9, you must first have set up a "from_to" file
in the r.le.para subdirectory, before you can run this option. See section
2.3.2.

A polygon is considered to be adjacent to another polygon if it
shares either an edge or a single vertex with the polygon. Polygon center
x and y coordinates are defined as the sum of the x and y coordinates of
all the boundary points divided by the number of points. This value is
rounded, so that the center is the row and column value of the cell
containing the center. Note that with this algorithm the center can be
outside the patch if the patch is irregularly shaped. All distances are
Euclidean distances in cells. Distance from center to center is the
distance from the center of the center cell of one polygon to the center of
the center cell of another polygon. Thus two cells next to each other in a
row are a distance of 1.0 apart, while two cells next to each other on a
diagonal are a distance of 1.414 apart. Distance from center to edge is
measured from the center of the center cell of one polygon to the edge of
the closest cell on the boundary of the other polygon. Thus, 2 cells next
to each other in a row are distance 0.5 apart, based on center to edge
distance. Distance from edge to edge is measured as the minimum

19

distance between
the edges of any
cells on the
boundary of the two
polygons. Thus two
cells next to each
other on a row or a
diagonal are a
distance 0.0 apart.
Note that with
methods m0-m1 a
very large number of
distances is
calculated, whereas
with methods m2-
m6 the number of
distances measured
is the same as the
number of patches
in the sampling
area. With methods
m7-m9 the number
of distances is the
same as the number
of patches in the
sampling area that
belong to the "from"
group. Note that the
distance between
polygons A and B
may be used more

than once with any of the measures, as this distance may be calculated
once with polygon A as the "from" polygon and once with polygon B as
the "from" polygon. The distance between polygons A and B is the same
no matter which is the "from" polygon if center-center or edge-edge
distance are calculated, but it is not the same if center-edge distance is
calculated.

di2 is the distance measure, which can have these values:

n1 = Mean distance: This is simply the total of all the distances divided
by the number of distances measured. Note that when a patch
does not have an adjacent or nearest neighbor that patch is
omitted from the calculation of the mean. Its distance is not
recorded as zero.

n2 = Standard deviation of distance: This is the population standard
deviation of the distances in the sampling area. It is calculated

20

as:

where xi is distance i, x is the mean distance of all the distances,
and N is the number of distances. Note that when a patch does
not have an adjacent or nearest neighbor that patch is omitted
from the calculation of the standard deviation. Its distance is not
recorded as zero.

n3 = Mean distance by group: This is the mean distance within the
sampling area, as in M, but calculated separately for the patches
within each group.

n4 = Standard deviation distance by group: This is the population
standard deviation of distances with the sampling area, as in n2,
but calculated separately for the patches within each group.

n5 = Number of distances by distance class: This is a tally of the number
of distances within each of up to 25 user-specified distance
classes.

n6 = Number of distances by distance class by group: This is a tally of

the number of distances within each of up to 25 user-specified
distance classes, as in n5, but calculated separately for the
patches within each group.

out is the name of the output file containing a table listing distance measures for
each patch. Obtain this table by specifying a filename (e.g., out=table)
for a file that will be written in the r.le.out subdirectory. If out=head is
specified, then the file will contain a line with column headings at the top
of the file. See section 2.8.2 for the format of the output file. Note that,
when no adjacent or nearest neighbors are found for a particular patch,
there will be no entry for that patch in this output file.

2.5.2. Examples of the use of the r.le.dist program

EXAMPLE 1: Measure the nearest neighbor distance from a patch in group 1 to another patch
in group 1 in raster map "example1" using center-to-center distances, output the individual
measurements for each patch into file "head" and calculate the mean and standard deviation of
these measurements. To do this you would first use r.le.setup to setup a "from_to" file in the
r.le.para subdirectory specifying which attributes belong in group 1. Assuming you are willing to
accept the default values for parameters, then type:

21

r.le.dist map=example1 di1=m7 di2=n1,n2 out=head

The file "r.le.out/head" will contain a list of patches and the corresponding distances from each
patch. The file "r.le.out/n1-2.out" will contain a single line with the mean distance and the
standard deviation of distance.

EXAMPLE 2: Measure the distance from each patch to all its adjacent neighbors and do this
for every patch in raster map "example2" using center-to-edge distances. Report the number of
these distances that are in the following distance classes: 0-5 cells, 6-10 cells, > 10 cells. To
do this you would first use r.le.setup to setup a "dist_ce" file, which will contain the following
entry:

0.00 6.00 11.00 -999 - lower limits.

This entry indicates the lower limit for each distance class, and -999 to indicate the end of the
list. Once this file is setup, assuming that you accept the default values for parameters, then
you can complete the calculation by typing:

r.le.dist map=example2 di1=m1 di2=n5

EXAMPLE 3: Use a 5 cell X 5 cell moving window to create a new map from raster map
"example3" to show the mean distance, for all cells within group 1, to the nearest neighboring
patch in group 2, based on edge-to-edge distances. To speed up the calculations, skip every
other cell in the boundary when finding distances, and only use 10 candidate patches. To do
this, first use r.le.setup to make a "from_to" file specifying the attributes that belong in group 1
and the attributes that belong in group 2. Then use r.le.setup to setup the moving window.
Choose the option in r.le.setup that allows you to use the keyboard to setup the moving window,
then enter 5 5 to choose a 5 by 5 moving window. Then to complete the calculation and make
the new map type:

r.le.dist map=example3 sam=m ski=1 can=10 di1=m9 di2=n1

The program will show a decreasing number of windows as they are completed and the
estimated time of completion. Once the program is completed, a new map called "n1" will be
created. Use "g.list rast" to see that map "n1" is there. Display the map in a monitor window by
typing "d.rast n1".

22

2.6. The r.le.patch program

This program can be used to calculate attribute, patch size, core (interior) size, shape,
boundary complexity, and perimeter measures for sets of patches in a landscape. See section
2.4. for an explanation of how to start the r.le.patch program.

Note that the perimeter-area fractal dimension, which was available in previous versions
of the r.le programs, has been removed. Research by Frohn (1998) has shown that the
perimeter-area fractal dimension is unstable, unreliable, and should not be used. Also, the
perimeter-area fractal dimension does not show a meaningful or consistent response to
landscape fragmentation (Baker 2000). Twist number statistics, in contrast, have a sounder
theoretical basis as a measure of boundary complexity (Bogaert et al. 1999), and should be
considered as a possible replacement for the perimeter-area fractal dimension. The r.le.patch
program now includes twist number statistics.

2.6.1. Syntax for the r.le.patch program

The syntax for the command-line version and the parameters for both interactive and
command-line versions are as follows:

 r.le.patch [-cnptu] map=name [sam=name] [reg=name] [att=name[,name,...]]
 [siz=name[,name,...]] [co1=value] [co2=name[,name,...]] [sh1=name]
 [sh2=name[,name,...]] [bnd=name[,name,...]] [per=name[,name,...]] [out=name]

 where:

brackets [] indicate optional parameters or values
-c is a flag o request an output map called "interior" which will contain patch

interiors.
-n is a flag to request an output map showing the patch number. This number is

the number assigned sequentially as the program traces the patches. It
is also the number that is displayed in the individual patch measure
output file specified with the "out" parameter.

-p is a flag to request that the sampling area boundary be counted as though it
were perimeter for patches adjoining the boundary.

-t is a flag to request 4-neighbor tracing instead of the default 8-neighbor tracing.
4-neighbor tracing adds a cell to a patch only if it is in the same row or
column as the current cell while tracing proceeds. 8-neighbor tracing
adds cells to a patch if they are among the surrounding 8 neighboring
cells.

-u is a flag to request output maps showing the sampling units that were set up
for each scale using r.le.setup

map is the GRASS raster map to be analyzed. This raster map must be
available in the user's working GRASS database (/location/mapset/),

sam is the kind of sampling area: w, u, m, or r, where w=whole map, u=sampling
units, m=moving window, or r=regions.

reg is the name of the regions map to be used when sam=r,

23

att is a set of attribute measures:

a1 = Mean pixel attribute: This is the average value of the attributes of all
the non-null cells in the sampling area. Each attribute is weighted
by how many cells it occupies. The mean pixel attribute, x, is
then:

 where wi is the number of cells of attribute i, i is the attribute of
these cells, m is the number of non-null attributes in the sampling
area, and size is the size of the sampling area (in cells). This
measure is only meaningful when attributes represent
interval/ratio data, rather than nominal or ordinal data.

a2 = Standard deviation of pixel attribute: This is simply the population
standard deviation of the non-null attributes of the pixels in the
sampling area. The standard deviation of pixel attributes, s, is
then:

where xi is the attribute of patch i, x is the mean attribute of all the
patches, and N is the number of patches.

a3 = Mean patch attribute: This is the average attribute of all the patches
in the sampling area. It is calculated by summing up the attributes
of each patch and dividing by the number of patches.

a4 = Standard deviation of patch attributes: This is simply the population
standard deviation of the attributes of the patches in the sampling
area. The standard deviation of patch attributes, s, is then:

 where xi is the attribute of patch i, x is the mean attribute of all the
patches, and N is the number of patches.

a5 = Cover by group: This is a measure of the amount of land area
covered by each group. Cover is expressed as the decimal
fraction of the sampling area (excluding null cells) occupied by
each group.

 a6 = Density by group: This is a measure of the number of patches in
each group. It is expressed as the raw number of patches that
are in each group.

24

a7 = Total density: This is a measure of the raw total number of patches
in the sampling area.

a8 = Effective mesh number (Splitting index): This is “the number of
patches one gets when dividing the region into parts of equal size
in such a way that this new configuration leads to the same
degree of landscape division” (Jaeger 2000 p. 118). A large
number indicates more patches and more fragmentation. The
formula is:

S A

A

t

i
i

n=
∑
=

2

2

1

where At is the total area of the region (excluding null cells) and Ai
is the area of the ith patch of the total of n patches. See also
measures s7 and s8.

siz is a set of size measures:
s1 = Mean patch size: This measure, the mean size or area (in cells) of

the patches in the sampling area, is calculated for all patches in
the sampling area, ignoring the group of each patch, by simply
dividing the sampling area size (excluding null cells) by the
number of patches.

s2 = Standard deviation of patch size: This is the population standard
deviation of the sizes (in cells) of all the patches in the sampling
area, ignoring the group of each patch. The standard deviation of
patch size, s, is then:

 where xi is the size of patch i, x is the mean size of all the
patches, and N is the number of patches.

s3 = Mean patch size by group: This is the mean patch size within the
sampling area, as in s1, but calculated separately for all the
patches within each group.

s4 = Standard deviation of patch size by group: This is the population
standard deviation of the sizes (in cells) of all the patches in the
sampling area, as in s2, but calculated separately for all the
patches within each group.

s5 = Number by size class: This is a measure of the number of patches
in the sampling area that fall within each size class. This measure
is calculated for all the patches in the sampling area, ignoring the

25

group of each patch. The results can be reported for up to 25
size classes.

s6 = Number by size class by group: This is a measure of the number of
patches in the sampling area that fall within each size class. This
measure is calculated separately for all the patches within each
group. The results can be reported for up to 20 size classes.

s7 = Effective mesh size (m): “Denotes the size of the areas when the
region under investigation [sampling area] is divided into S areas
(each of the same size At/S) with the same degree of landscape
division” as the original map (Jaeger 2000 p. 118). The formula
is:

m
A
S A

At

t
i

i

n

= =
=
∑

1 2

1

where At is the total area of the region, S is the effective mesh
number (see measure a8) and Ai is the area of the ith patch of the
total of n patches. See also measures a8 and s8.

s8 = Degree of landscape division (D): “the probability that two randomly
chosen places in the landscape under investigation [sampling
area] are not situated in the same undissected area...graphically,
D is represented as the area below the curve in the diagram of the
cumulative area distribution function...” (Jaeger 2000 p. 118). D
varies from 0.0 to 1.0, where 0.0 is undivided and 1.0 is maximum
division. The formula is:

D
A
A

i

ti

n

= −
=
∑1

1

2()

where At is the total area of the region (excluding null cells) and Ai
is the area of the ith patch of the total of n patches.

co1 is the width of the edge in cells for use with co2. This represents how wide
the area of the patch is that is suspected to be affected by the patch
edge.

co2 is a set of core size measures. This represents the size of the patch core
after the edge width specified by co1 has been removed from the outside
of the patch. A map of the core or "interior" area can be obtained by
specifying the -c flag.

c1 = Mean core size: This measure, the mean size or area (in cells) of
the core of patches in the sampling area, is calculated for all
patches in the sampling area (including patches with no core
area), ignoring the group of each patch.

26

c2 = Standard deviation of core size: This is the population standard

deviation of the sizes (in cells) of the cores of all the patches in
the sampling area (including patches with no core area), ignoring
the group of each patch. The standard deviation of core size, s, is
then:

 where xi is the core size of patch i, x is the mean core size of all
the patches, and N is the number of patches.

c3 = Mean edge size: This measure, the mean size or area (in cells) of
the edge of patches in the sampling area, is calculated for all
patches in the sampling area (including patches with no edge
area), ignoring the group of each patch.

c4 = Standard deviation of edge size: This is the population standard
deviation of the sizes (in cells) of the edges of all the patches in
the sampling area (including patches with no edge area), ignoring
the group of each patch. The standard deviation of edge size, s,
is then:

 where xi is the edge size of patch i, x is the mean edge size of all
the patches, and N is the number of patches.

c5 = Mean core size by group: This is the mean core size within the
sampling area, as in c1, but calculated separately for all the
patches within each group.

c6 = Standard deviation of core size by group: This is the population
standard deviation of the sizes (in cells) of the cores all the
patches in the sampling area, as in c2, but calculated separately
for all the patches within each group.

c7 = Mean edge size by group: This is the mean edge size within the
sampling area, as in c3, but calculated separately for all the
patches within each group.

c8 = Standard deviation of edge size by group: This is the population
standard deviation of the sizes (in cells) of the edges all the
patches in the sampling area, as in c4, but calculated separately
for all the patches within each group.

27

c9 = Number of cores and edges by size class: This is a measure of the
number of patches in the sampling area that fall within each core
or edge size class. This measure is calculated for all the patches
in the sampling area (including patches with no core or edge
area), ignoring the group of each patch. The results can be
reported for up to 20 size classes.

c10 = Number of cores and edges by size class by group: This is a
measure of the number of cores and edges of patches in the
sampling area that fall within each size class. This measure is
calculated separately for all the cores and edges within each
group (including patches with no core or edge area). The results
can be reported for up to 20 size classes.

sh1 is a set of shape indices. There are three possible indices of patch shape
here. These are only three of the simplest indices of two-dimensional
shape (Austin 1984; MacEachren 1985):

m1 = Perimeter/area: The total length of the perimeter of each patch is
divided by its area, and the mean of these values is then
calculated. The sampling area edge can be either included or
excluded as part of the edge of the patch using the -p flag. A
problem with the ratio of perimeter/area as a shape index is that it
varies with the size of the patch, so it is not generally
recommended..

m2 = Corrected perimeter/area: The formula for this index for each patch
is: (0.282 X perimeter)/(area)1/2. The mean of these values for all
the patches is then calculated. This index corrects for the size
problem of index m1. The index varies from a value of 1.0 for a
circle to infinity for an infinitely long and narrow shape. It is 1.12
for a square.

m3 = Related circumscribing circle: This index compares the area of the
patch to the area of the smallest circle that can circumscribe the
patch. The formula for each patch is:

This index varies from 0.0 to 1.0 as the compactness of the shape
approaches that of a circle. A square has the value 0.79789.

sh2 is a set of shape measures:

h1 = Mean patch shape: This measure is calculated for all patches in the
sampling area, ignoring the group of each patch. The mean patch
shape is simply the sum of the patch shape indices for every
patch divided by the number of patches.

28

h2 = Standard deviation of patch shape: This is the population standard
deviation of the shapes of all the patches in the sampling area,
ignoring the group of each patch. The standard deviation of patch
shape, s, is then:

where xi is the shape of patch i, x is the mean shape of all the
patches, and N is the number of patches.

h3 = Mean patch shape by group: This is the mean patch shape within
the sampling area, as in h1, but calculated separately for all the
patches within each group.

h4 = Standard deviation of patch shape by group: This is the population
standard deviation of the shapes of all the patches in the sampling
area, as in h2, but calculated separately for all the patches within
each group.

h5 = Number by shape index class: This is the number of patches, in the
sampling area, whose shape index value falls within each shape
index class. This measure is calculated for all the patches in the
sampling area, ignoring the group of each patch. The results can
be reported for up to 25 shape index classes.

h6 = Number by shape index class by group: This is the number of
patches, in the sampling area, whose shape index value falls
within each shape index class. This measure is calculated
separately for all the patches in each group. The results can be
reported for up to 25 shape index classes.

bnd is the boundary complexity of a patch. Boundary complexity is based on
counts of individual cells that bound the patch. The measures that are
used here were implemented with the assistance of Dr. J. Bogaert at the
University of Antwerp, Belgium, and are described in full in Bogaert et al.
(1999).

n1 = Mean twist number (t): This measure is based on a count of the
number of straight segments along the boundary of a patch. “For
a closed curve like a patch perimeter, the number of twists t(n) will
always equal the number of perimeter segments” (Bogaert 1999
p. 277). “Large twist numbers are associated with small segment
lengths and rough perimeters” (Bogaert 1999 p. 277). The mean
twist number is simply the mean of the twist numbers for the n
patches in the sampling area.

n2 = Standard deviation of twist number: This is the population standard
deviation of the twist numbers of all the patches in the sampling
area, ignoring the group of each patch.

29

n3 = Mean omega index (S): This is an index of the irregularity of the
patch perimeter based on the twist number. It ranges from 0.0 to
1.0. High values are associated with straight perimeter segments.
The formula for the omega index for a patch is:

S =
t n t n
t n

max

max

() ()
()

−
− 4

where tmax(n) is the maximum possible twist number for a patch
with n cells (see Bogaert et al. 1999), and t(n) is the actual twist
number for the patch with n cells. The mean omega index is
simply the mean of the omega indices for all the patches in the
sampling area, ignoring the group of each patch.

n4 = Standard deviation of the omega index: This is the population
standard deviation of the omega indices of all the patches in the
sampling area, ignoring the group of each patch.

per is the perimeter of a patch, which is the total length of external and internal
boundary expressed as the number of cell edges. The perimeter
includes the edge of the sampling area when the -p flag is specified, but
the default excludes the sampling area edge. The perimeter is measured
for each patch individually. Thus boundaries between adjoining patches
get measured twice, once for each patch. The edge measures of
r.le.pixel, in contrast, do not measure shared boundaries twice. There
are several possible measures of perimeter:

p1 = Sum of the perimeters: This is the total of all the perimeters for all
the patches in the sampling area, ignoring the group to which the
patch belongs.

p2 = Mean perimeter: This is the mean perimeter length for the patches
in the sampling area, ignoring the group to which the patches
belong. It is calculated by dividing the sum of the perimeters by
the number of patches.

p3 = Standard deviation of perimeter: This is the population standard
deviation of perimeter length for all the patches in the sampling
area, ignoring the group to which they belong. The standard
deviation of perimeter length, s, is then:

where xi is the perimeter length of patch i, x is the mean perimeter
length of all the patches, and N is the number of patches.

30

p4 = Sum of perimeters by group: This is the total of all the perimeters
for all the patches in the sampling area, as in p1, calculated
separately for the patches belonging to each group.

p5 = Mean perimeter by group: This is the mean perimeter length for the
patches in the sampling area, calculated separately for the
patches belonging to each group. It is calculated by dividing the
sum of the perimeters by the number of patches within each
group.

p6 = Standard deviation of perimeter by group: This is the population
standard deviation of perimeter length for all the patches in the
sampling area, as in p3, but calculated separately for the patches
belonging to each group.

out is the name of the output file containing a table listing individual measures for
each patch (e.g., size, shape). Obtain this table by specifying a filename
(e.g., out=table) for a file that will be written in the r.le.out subdirectory. If
out=head is specified, then the file will contain a line with column
headings at the top of the file.

2.6.2. Examples of the use of the r.le.patch program

EXAMPLE 1: Measure and report mean patch size and mean perimeter for all patches in raster
map "example1" and report patch size and perimeter for each patch. Make a new map with
each cell attribute the number of the patch; this number corresponds to the number in the
resulting "r.le.out/head" file. Do not count the sampling area boundary as perimeter and use 8
neighbor tracing. To do this simply type:

r.le.patch map=example1 -n siz=s1 per=p2 out=head

Since the default is to not count sampling area boundary as perimeter and to use 8 neighbor
tracing, nothing need be typed for these options. The mean patch size value will be found in file
"r.le.out/s1-2.out" and the mean perimeter value in file "r.le.out/p1-3.out". You will find a list of
each patch's size and perimeter in file "r.le.out/head" and a new map called "num" should be
found in your mapset. Use "g.list rast" to see if it's there and "d.rast num" to display it.

EXAMPLE 2: Measure and report the mean size of patch core areas for all forest areas in map
"example2" given that the edge of patches extends into the patch 2 cells. Make a new map
showing the core areas of each patch, and report the amount of core area for each individual
patch. To do this first use r.le.setup and click on "GROUP/CLASS LIMITS" at the main menu.
Then put an "x" where there's now a dash under "r.le.patch - Attribute groups"; then input a list
of the attributes that belong in the group "forest" which can be given a group number of "1".
Now to complete the analysis type:

r.le.patch map=example2 -c co1=2 co2=c1 out=head

31

Because you specified the -c flag, a new map called "interior" will be produced in your mapset.
An example of this map is in Fig. 4, which was produced with the command above. This map
will be like the original map except that a 2 cell margin around each patch will be reclassified to
category 0. Some patches, as a result, may disappear if they were only a few cells wide. Since
you specified "out=head" you can look at file "r.le.out/head" to see a list of each patch in the
map and its core area. Look at file "r.le.out/c1-4.out" file for mean size of core areas.

EXAMPLE 3: Setup a random nonoverlapping sampling network of 25 sampling units each 10
cells wide by 5 cells high, and place this network over the part of raster map "example3" that is
in Albany County. Do the same thing in adjoining Carbon County. The purpose of this example
is to see whether landscapes in Albany County are more variable than are those in Carbon
County. In each sampling unit measure the sum of perimeters. To do this first make a raster
map (or use an existing map?) showing Albany and Carbon counties. You can use v.digit or
some other approach to make this map. Once the map is made, type "r.mask" and put a "1" in
front of the attribute representing Albany County. What this does is it masks Albany County so
all attributes in this county show through, while those areas outside Albany County do not.
Subsequent use of r.le.patch is thus restricted to the Albany County area. Next, start r.le.setup,
click on "SAMPLING UNITS" at the main menu, then enter "1" to use the keyboard to enter
sampling unit parameters. Then type "1" to select just one scale. Then type "1" to select the
random nonoverlapping method of sampling unit distribution. When asked about sampling unit
shape, enter 2.0 to get a shape that is twice as wide as high (we need 10 cells wide by 5 cells
high). Then enter "50" to get a sampling unit that is the right size (10 X 5 = 50). Finally, enter
"25" as the number of sampling units. The sampling units will be displayed on the screen as
they are placed. Answer "y" to accept the set of sampling units. Enter "n" to avoid refreshing
the screen. Then click on "EXIT-SAVE" at the main menu. The sampling unit file is saved as
file "r.le.para/units" You can check to see that the file was made correctly by typing "more
r.le.para/units" and the file contents will display on screen. By the way, the sampling unit
framework you just setup should look something like the one in Fig. 1, which was made using
the above procedure. Now, you are ready to run the r.le.patch analysis using the sampling unit
network you just setup. To complete the analysis just type:

r.le.patch map=example3 sam=u per=p1

The "sam=u" parameter requests that the sampling unit network be used. After the program is
completed, type "more r.le.out/p1-3.out" to see the result. This file will contain 25 lines listing
the sum of perimeters for each of the sampling units.

32

2.7. The r.le.pixel program

The r.le.pixel program contains a set of measures for attributes, diversity, texture,
juxtaposition, and edge. See section 2.4. for an explanation of how to start the r.le.pixel
program.

2.7.1. Syntax for the r.le.pixel program

The syntax for the command-line version and the parameters for both interactive and
command-line versions are as follows:

 r.le.pixel [-beuz] map=name [sam=nam] [reg=name] [att=name[,name,...]]
 [div=name[,name,...]] [te1=name] [te2=name[,name,...]]
 [jux=name[,name,...]] [edg=name[,name,...]]

 where:
brackets [] indicate optional parameters or values
-e is a flag to request an output map showing the location of edges of a

particular type as specified in file r.le.para/edge
-u is a flag to request output maps showing the sampling units that were setup

for each scale using r.le.setup
-z is a flag to request an output map 'zscores' with standardized scores. These

scores rescale the attributes by subtracting the mean pixel attribute and
then dividing the result by the standard deviation of the mean pixel
attribute. Attributes then represent deviations from the mean in standard
deviation units.

map is the GRASS raster map to be analyzed. This raster map must be
available in the user's working GRASS database (/location/mapset/),

sam is the kind of sampling area: w, u, m, or r, where w=whole map, u=sampling
units, m=moving window, or r=regions,

reg is the name of the regions map to be used when sam=r,

att is a set of attribute measures:

b1 = Mean pixel attribute: This is the average value of the attributes of all
the non-null cells in the sampling area. Each attribute is weighted
by how many cells it occupies. The mean pixel attribute, x, is
then:

 where wi is the number of cells of attribute i, i is the attribute of
these cells, m is the number of non-null attributes in the sampling
area, and size is the size of the sampling area (in cells). This
measure is only meaningful when attributes represent
interval/ratio data, rather than nominal or ordinal data.

33

b2 = Standard deviation of pixel attribute: This is simply the population
standard deviation of the non-null attributes of the cells in the
sampling area. The standard deviation of pixel attributes, s, is
then:

where xi is the attribute of patch i, x is the mean attribute of all the
patches, and N is the number of patches.

b3 = Minimum pixel attribute: This is the smallest non-null pixel attribute.

b4 = Maximum pixel attribute: This is the largest non-null pixel attribute.

div is a set of measures of the diversity of patch attributes within the sampling
area. The relative merits of the following measures have been evaluated
by Peet (1974):

d1 = Richness: This is simply the number of different patch attributes

present in the sampling area.

d2 = Shannon index (H'): This is an index that combines richness and
evenness. Its formula is:

where pi is the fraction of the sampling area occupied by attribute
i, and m is the number of attributes in the sampling area.

d3 = Dominance: This index is related to the Shannon index, but
emphasizes the deviation from evenness. The formula for
dominance, D, is:

where n is the number of attributes in the sampling area. This
index was first proposed and used by O'Neill et al. (1988).

d4 = Inverse Simpson's index (1/S): This index also combines richness
and evenness. It is a measure of the probability of encountering
two cells of the same attribute when taking a random sample of
two cells. Its formula is:

where pi is the fraction of the sampling area occupied by attribute
i, and m is the total number of attributes within the sampling area.

34

Figure 5

te1 is a set of seven methods for
analyzing adjacencies for each cell
(Fig. 5):

m1 = 2N-H
m2 = 2N-45
m3 = 2N-V
m4 = 2N-135
m5 = 4N-HV
m6 = 4N-DIAG
m7 = 8N

te2 is a set of texture measures that quantify the adjacency of similar attributes.
They are in a sense simply local (neighborhood) measures of diversity.
Most of the measures have been reviewed by Haralick et al. (1973),
Haralick (1975), Musick and Glover (1990), and Baraldi and Parmiggiani
(1995). All of the measures require calculation of a grey-level co-
occurrence matrix (GLCM), which is m X m, where m is the number of
attributes in the sampling area. The GLCM matrix contains entries, Pij,
which are the decimal fraction of the total number of adjacencies that are
represented by attribute i adjacent to attribute j. The number of
adjacencies is calculated by moving through the sampling area cell-by-
cell with a 3 cell X 3 cell window using the possible adjacencies specified
by parameter te1 (Fig. 5). Baraldi and Parmiggiani (1995) suggest that
the most significant and distinct measures of texture are angular second
moment (t2) and contrast (t5), so these might be good starting points for
any analysis. There are five measures of texture that can be calculated:

t1 = Contagion: This measure quantifies the degree of clumping, and is a
modification of the entropy measure (N). The formula for
contagion, C, is:

The formula for this measure was printed incorrectly in O'Neill et
al. (1988), where it was introduced, as 2m*ln(m)-ENT. Frohn
(1998) presents evidence that the contagion index is unstable,
varying with resolution, number of attributes, and rotation. He
suggests that other measures are preferable. Baker (2000) found
that the contagion index did not show a consistent or meaningful
response to landscape fragmentation.

t2 = Angular second moment (energy): This is a measure of “textural
uniformity, i.e., pixel pairs repetitions” (Baraldi and Parmiggiani
1995 p. 298). Values range from 0 to a high of 1, when “the gray
level distribution over the window has either a constant or periodic
form” (Baraldi and Parmiggiani 1995 p. 298). The formula for

35

angular second moment, ASM, is:

t3 = Inverse difference moment: This measure combines the textural
effects of both angular second moment and contrast. Baraldi and
Parmiggiani (1995) recommend it not be used. The formula for
inverse difference moment, IDM, is:

t4 = Entropy: Entropy is a maximum with completely random gray-level
values from window-to-window (complete “disorder”). There is no
maximum value; entropy is inversely related to angular second
moment (energy), and that index may be the better, since it varies
from 0 to 1 (Baraldi and Parmiggiani 1995). The formula for
entropy, ENT, is:

t5 = Contrast: This is a measure of the contrast or amount of local
variation present in the landscape. This measure is strongly
inversely correlated with inverse difference moment and angular
second moment (Baraldi and Parmiggiani 1995). The formula for
contrast, CON, is:

jux is a set of two juxtaposition measures. Juxtaposition was described and
used by Mead et al. (1981) and Henein and Cross (1983). Juxtaposition
is a measure of the weighted length of edges surrounding a center cell.
The juxtaposition for a center cell surrounded by eight neighbors is given
by:

where:
qn is 2.0 if cell n horizontally or vertically forms, with the center

cell, one of the edge types specified in the weight matrix,
and qn is 1.0 if cell n diagonally forms, with the center cell,
one of the edge types specified in the weight matrix.
Diagonal neighbors get a quantity ranking, q, of 1.0, while
horizontal and vertical neighbors get a quantity ranking of
2.0 because horizontal and vertical edges share more
edge than do diagonal edges in a raster representation of
patches. Unless there are null cells, the denominator of
the equation is 12.

36

wij is a user-assigned number between -1.0 and +1.0 which
indicates the user-assigned relative "quality" or weight to
be given to edges between attributes mi and mj.

The weight matrix containing the wij is m X m, where m is the
number of different attributes. This matrix must be typed into a file
created with an editor and stored as an ASCII file named "weight" in the
r.le.para subdirectory. The weighting matrix has the format:

att1 att2 ... attm

att1 w11 wi2 ... w1m

att2 w21 w22 ... w2m

attm wm1 wm2 ... wmm

where atti is attribute I of m attributes, and wij is the weight, expressed as
a real number between -1.0 and +1.0, assigned when attribute i and
attribute j share an edge. The weight matrix should be symmetric (i.e.,
w23 = w32). Diagonal elements can be non-zero so weight is given to
adjacent cells with the same attribute. Juxtaposition values range from
0.0 to 1.0, with 0.0 indicating no adjacencies of the edge types specified
in the weight matrix and 1.0 occurring when edge types with potential
weights that are all +1.0 occur in every cell around the center cell.

 An example of a weight file:

1 2 3 4
1 0.0 0.3 0.2 0.6
2 0.3 0.0 0.4 0.7
3 0.2 0.4 0.0 0.4
4 0.6 0.7 0.4 0.0

The two juxtaposition measures, then, are:

j1 = Mean juxtaposition: The program first calculates the juxtaposition for
each non-null cell in the map layer by examining edges with non-
null attributes in the 8 cells surrounding each cell. Then the
program finds the mean juxtaposition of all the cells in the
sampling area, by summing all the juxtaposition values and
dividing by the number of non-null cells.

37

j2 = Standard deviation of juxtaposition: This is the population
standard deviation for all the cells in the sampling area.
The standard deviation, s, is given by:

where xi is the juxtaposition for cell i, x is the mean juxtaposition of
all the cells, and N is the number of cells.

edg is the length of patch boundary, but in summing edge for all the patches in a
sampling area edges are counted only once when they are shared
between two patches. An "edge" is considered to occur only when
adjoining cells, along a row or within a column, have a different attribute.
Diagonal neighbors with different attributes are not considered edge, nor
are adjoining cells with the same attribute.

e1 = Sum of the edges: This is the total length of all the edges, counted
only once, of all the patches in the sampling area. It differs from
the total perimeter length which sums the length of each patch's
total perimeter, effectively counting shared perimeters twice.

e2 = Sum of edges by edge type: This is the length of all the edges of a
particular type. The type of edge that is desired is specified by
creating a file "r.le.para/edge" that has the following format:

att1 att2 ... attm

att1 e11 ei2 ... e1m

att2 e21 e22 ... e2m

attm em1 em2 ... emm

where atti is attribute I of m attributes, and eij is a 1 if the edge
between attribute i and j should be counted and 0 if it should not
be counted. Note that the matrix should be symmetric (i.e., e21 =
ei2), and diagonal elements of the matrix should be 0, since edges
are only between cells with different attributes.

Here is an example of an edge file, which specifies that only
edges between attributes 1 and 2 should be measured:

38

1 2 3
1 0 1 0
2 1 0 0
3 0 0 0

2.7.2. Examples of the use of the r.le.pixel program

EXAMPLE 1: Use a 3-cell by 3-cell moving window to produce a new map of the richness of
cell types in raster map "example1". First start r.le.setup and click on MOVING WINDOW at
the main menu. Answer "n" to the question "Use mouse to define the moving window?" Then
at the prompt "Enter COLUMNS & ROWS of the window" enter "3 3" to get a 3 x 3 moving
window. Then answer "n" to not refresh the screen. Finally, click on EXIT-SAVE at the main
menu to exit and save the moving window parameters in the "r.le.para/move_wind" file. You
can look at this file by typing "more r.le.para/move_wind" to make sure the setup worked. Now,
to complete the analysis, type:

r.le.pixel map=example1 sam=m div=d1

The program will show the progress of moving windows and the expected completion time.
When it is done, the program will produce a new map called "d1" in your current mapset. Use
"g.list rast" to see if it is there and "d.rast d1" to display it. The map in Figure 3 was produced
using the above procedure and analysis.

EXAMPLE 2: Measure the amount of edge between attributes 1 and 2 in raster map
"example2" and produce a new map showing where these types of edges occur. Assume that
the map has only 4 attributes. To do this, first use a text editor to make a file "r.le.para/edge"
as follows:

1 2 3 4
1 0 1 0 0
2 1 0 0 0
3 0 0 0 0
4 0 0 0 0

This file has a "1" to indicate that edges between attributes 1 and 2 should be counted. Now, to
complete the analysis, type:

r.le.pixel map=example2 -e edg=e2

The -e flag requests a new map of the edges between attributes 1 and 2. This new map will be
created in your current mapset, and it will be called "edge". You can see if the map is there by
typing "g.list rast" and use "d.rast edge" to display it. The length of edge between attributes 1
and 2 will be reported in file "r.le.out/e2.out". You can look at this file by typing "more
r.le.out/e2.out".

39

2.8 The r.le.trace program

This is a program designed to quickly get some basic information (e.g., area, perimeter)
about a particular patch or a set of patches. When sampling the whole map, the r.le.trace
program can be used to do three things: (1) show patch numbers on the display; (2) display the
attribute, area, perimeter, shape indices, and twist indices for each patch, and (3) save these
data in an output file. The syntax for the command-line version and the parameters for both
interactive and command-line versions are as follows:

r.le.trace [-pt] map=name [out=name]

 where:

-p is a flag to request including the sampling area boundary as perimeter when
calculating the amount of perimeter

-t is a flag to request 4 neighbor tracing. The default is to use all the 8 neighbors
as potential members of a patch when tracing

brackets [] indicate optional parameters or values
map is the name of the raster map whose patches are to be traced
out is the name of an output file to be created in the current directory to store

output data; if the file exists, the program will overwrite it without first
warning about the overwrite.

After r.le.trace is invoked, the program begins tracing and the message "R.LE.TRACE
IS WORKING ..." is displayed, along with a running count of the number of traced patches.
When tracing is done, the user is asked:

 “Show patch numbers on the display? (y/n) [y]”.

Patch numbers can be used to obtain data for a particular patch in the next step. The patch
number is generated sequentially by the r.le.trace program as it goes through the map and
traces the patches. If the answer to the above question is “n” then the program goes to the
next question. If the answer is “y” then the program will print the patch number on the display
near the center of the patch. Numbers may not show for patches on the margin of the display.
Next the program asks:

“Show data for a patch, identified by number? (y/n) [y]”

If the answer Is “n” then the program will go to the next question. If the answer is “y”, then the
user is prompted: “Which patch number? Enter zero to continue.” If the user enters a patch
number, then the program displays the patch attribute, area, perimeter, shape indices, and the
twist number and omega index for the patch. The user can repeatedly enter patch numbers to
obtain this information about other patches. When done with this, the user can enter a “0" to go
to the next question, which is:

“Show data for some patches in sequence (y)
or show data for all patches (n)? (y/n) [y]”

40

If the user answers “y”, then the user is given the following options:

<CR> - Show next patch; don’t refresh display
 n - Show next patch and refresh display
 s - Skip one patch and refresh display
 q - Quit

<CR> begins displaying the patch data starting with patch #1. If the out parameter was
specified, then the attribute, area, perimeter, shape indices, and twist indices for each
patch are saved in this file automatically. The n and s parameters allow the user to see
the patch more easily, as the other patch numbers are erased. When done, the
program must be left, using “q”.

If the user answers “n”, then the user is asked the next question:

“Output data for all patches on screen (y)
or just to the output file (n)? (y/n) [y]”

This question is provided so the user can avoid printing all the patch data to the screen, useful
when there are many patches. No matter which answer is selected, the data for all patches is
written to the output file specified by the “out” parameter.

ACKNOWLEDGMENTS

I appreciate the assistance of the GRASS Developer’s group, particularly Markus Neteler and
Eric Miller. For assistance in implementing the twist number statistics, I thank Jan Bogaert.
Jochen Jaeger helped implement the measures of landscape division, and effective mesh size
and number.

41

3. GLOSSARY

Attribute: One of several values that are possible for the cells in a GRASS cell file, or a polygon
in a GRASS vector file.

Class: see "Index class"

Element type: a part (element) of the landscape that has been
classified as belonging to a group of similar elements. For example, barns and houses
are elements that might be classified as members of the "buildings" element type.

GRASS raster map: a two-dimensional raster array of integer values
representing a geographic area. A GRASS raster map actually consists of the cell file
itself plus several supporting files. Of these, the most important is the cell header file
which contains information on the number of rows and columns in the cell file and the
geographic area it covers. Other supporting files include the cell category file, the cell
color table file, the cell history file, and the cell range file. These files are normally
handled automatically in GRASS whenever a raster map is manipulated. (Refer to the
GRASS User's Guide and the GRASS Programmer's Manual for further information.)

GRASS vector map: a polygonal representation of a geographic area,
where the polygons are formed by points and line segments (also known as nodes and
arcs). GRASS vector maps consist of an arc-node file (a "dig" file) and several
supporting files. The arc-node file contains a header section, which includes the
geographic location of the layer, and a list of arcs and their defining points and nodes.
The vector index and pointer file ("dig_plus" file) contains the polygon topology, i.e.,
information on which arcs and nodes comprise which polygons. The vector category
attribute file ("dig_att" file) lists the category, or attribute, for each polygon, while the
vector category label file ("dig_cat" file) lists labels for the categories, if they have been
supplied by the user. Although in most cases, the supporting files are handled
automatically by GRASS, the user must in some cases deal with them separately. For
example, when performing a raster to vector conversion, it is necessary to first create
the arc-node file and then the topology file. (Refer to the GRASS User's Guide and the
GRASS Programmer's Manual for further information.)

Group: a reclassing of related attributes into a single unit or "group." For example all patches
that have not been disturbed in 1, 5, 6, or 9 years might be grouped into a 0-10 year age
group.

Index class: the values of many of the indices may be reported in index classes in order to
display the distribution of index values.

Moving window: a square sampling area, with odd dimensions (e.g. 3 cells wide by 3 cells
high), that is moved cell-by-cell across the rows in a map layer. At each location the
center cell is assigned the value for a particular structural measure calculated for the
part of the map layer corresponding to the window area.

42

Sampling area: a polygon, with a certain size and shape, that
identifies the area on a map layer that is to be used in calculating the r.le measures.

Sampling frame: a rectangular area drawn to enclose part or all of the currently displayed
region of a raster map. The sampling frame is used in subsequent analyses as the area
within which sampling units or a moving window will be distributed.

43

4. BIBLIOGRAPHY

Anselin, L. 1989. Spatial regression analysis on the PC: spatial econometrics using GAUSS.
Draft manual, Department of Geography and Department of Economics, University of
California, Santa Barbara, Calif. 97 pp.

Austin, R.F. 1984. Measuring and comparing two-dimensional shapes. p. 293-312 in Gaile, G.L.
and C.J. Willmott (eds.) Spatial Statistics and Models. D. Reidel Publ. Co., Boston.

Baker, W.L. 2000. Measuring and analyzing forest fragmentation in the Rocky Mountains and
Western United States. Pages 55-94 In: Knight, R.L., F.W. Smith, S.W. Buskirk, W.H.
Romme, and W.L. Baker (eds.) Forest fragmentation in the Southern Rocky Mountains.
University Press of Colorado, Boulder.

Baker, W.L. and Y. Cai. 1992. The r.le programs for multiscale analysis of landscape structure
using the GRASS geographical information system. Landscape Ecology 7(4):291-302.

Baraldi, A. and F. Parmiggiani. 1995. An investigation of the textural characteristics associated
with gray level cooccurrence matrix statistical parameters. IEEE Transactions on
Geoscience and Remote Sensing 33(2):293-304.

Bogaert, J., P. Van Hecke, R. Moermans, and I. Impens. 1999. Twist number statistics as an
additional measure of habitat perimeter irregularity. Environmental and Ecological
Statistics 6:275-290.

Ford, E.D. and E. Renshaw. 1984. The interpretation of process from pattern using two-
dimensional spectral analysis: modelling single species patterns in vegetation. Vegetatio
56:113-123.

Forman, R.T.T. 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge
University Press, Cambridge. 632 pp.

Forman, R.T.T. and M. Godron. 1986. Landscape Ecology. John Wiley and Sons, New York.
619 pp.

Frohn, R.C. 1998. Remote sensing for landscape ecology: New metric indicators for
monitoring, modeling, and assessment of ecosystems. Lewis Publishers, Boca Raton,
Florida. 99 pp.

Gardner, R.H., B.T. Milne, M.G. Turner, and R.V. O'Neill. 1987. Neutral models for the analysis
of broad-scale landscape pattern. Landscape Ecology 1:19-28.

Griffiths, D.A. 1987. Spatial Autocorrelation: A Primer. Resource Publications in Geography,
Association of American Geographers, Washington, D.C. 86 pp.

Griffiths, D.A. 1989. Spatial regression analysis on the PC. Institute of Mathematical
Geography, Syracuse University, Discussion Paper No. 1. 84 pp.

Gustafson, E.J. and G.R. Parker. 1992. Relationships between landcover proportion and

44

indices of landscape spatial pattern. Landscape Ecology 7:101-110.

Haralick, R.M. 1975. Statistical and structural approaches to texture. Proceedings of the IEEE
67:786-804.

Haralick, R.M., K. Shanmugam, and I. Dinstein. 1973. Textural features for image classification.
IEEE Transactions on Systems, Man, and Cybernetics SMC-3:610-621.

Heinen, J. and G.H. Cross. 1983. An approach to measure interspersion, juxtaposition, and
spatial diversity from cover-type maps. Wildlife Society Bulletin 11:232-237.

Jaeger, Jochen A.G. 2000. Landscape division, splitting index, and effective mesh size: new
measures of landscape fragmentation. Landscape Ecology 15:115-130.

Kennedy, S.K. and W.-H. Lin. 1986. FRACT-a FORTRAN subroutine to calculate the variables
necessary to determine the fractal dimension of closed forms. Computers &
Geosciences 12:705-712.

Krummel, J.R., R.H. Gardner, G. Sugihara, R.V. O'Neill, and P.R. Coleman. 1987. Landscape
patterns in a disturbed environment. Oikos 48:321-324.

L.A.S., Inc. 1997. GRASSLAND user’s guide. Logiciels et Applications Scientifiques (L.A.S.)
Inc., Laval, Quebec, Canada.

MacEachren, A.M. 1985. Compactness of geographic shape: Comparison and evaluation of
measures. Geografiska Annaler 67B:53-67.

McGarigal, K. and B.J. Marks. 1995. FRAGSTATS: spatial pattern analysis program for
quantifying landscape structure. USDA Forest Service General Technical Report PNW-
GTR-351, Pacific Northwest Research Station, Portland, Oregon 122 pp.

Mead, R.A., T.L. Sharik, S.P. Prisley, and J.T. Heinen. 1981. A computerized spatial analysis
system for assessing wildlife habitat from vegetation maps. Canadian Journal of
Remote Sensing 7:34-40.

Milne, B.T. 1988. Measuring the fractal geometry of landscapes. Applied Mathematics and
Computation 27:67-79.

Mulla, D.J. 1988. Using geostatistics and spectral analysis to study spatial patterns in the
topography of southeastern Washington state, U.S.A. Earth Surface Processes and
Landforms 13:389-405.

Musick, H.B. and H.D. Grover. 1990. Image textural measures as indices of landscape pattern.
p. 77-103 in Turner, M.G. and R.H. Gardner (eds.) Quantitative methods in landscape
ecology. Springer-Verlag, New York.

Odlund, J. 1988. Spatial Autocorrelation. Sage Publications, Beverly Hills, California. 87 pp.

Oliver, M., R. Webster, and J. Gerrard. 1989a. Geostatistics in physical geography. Part 1:

45

theory. Transactions of the Institute of British Geographers 14:259-269.

Oliver, M., R. Webster, and J. Gerrard. 1989b. Geostatistics in physical geography. Part 2:
applications. Transactions of the Institute of British Geographers 14:270-286.

O'Neill, R.V., J.R. Krummel, R.H. Gardner, G. Sugihara, B. Jackson, D.L. Angeles, B.T. Milne,
M.G. Turner, B. Zygmunt, S.W. Christensen, V.H. Dale, and R.L. Graham. 1988. Indices
of landscape pattern. Landscape Ecology 1:153-162.

Peet, R.K. 1974. The measurement of species diversity. Annual Review of Ecology and
Systematics 5:285-307.

Renshaw, E. and E.D. Ford. 1984. The description of spatial pattern using two-dimensional
spectral analysis. Vegetatio 56:75-85.

Risser, P.G., J.R. Karr, and R.T.T. Forman. 1984. Landscape ecology: directions and
approaches. Illinois Natural History Survey Special Publication No. 2, Champaign,
Illinois. 18 pp.

Robertson, G.P. 1987. Geostatistics in ecology: interpolating with known variance. Ecology
68:744-748.

Turner, M.G. 1990. Spatial and temporal analysis of landscape patterns. Landscape Ecology
4:21-30.

Urban, D.L., R.V. O'Neill, and H.H. Shugart, Jr. 1987. Landscape ecology: a hierarchical
perspective can help scientists understand spatial patterns. BioScience 37:119-127.

USA-CERL. 1993. GRASS 4.1 Reference Manual. United States Army Corps of Engineers
Construction Engineering Research Laboratory, Champaign, Illinois.

Woodcock, C.E., A.H. Strahler, and D.L.B. Jupp. 1988. The use of variograms in remote
sensing: II. Real digital images. Remote Sensing of Environment 25:349-379.

46

TABLE 1. Measures that can be calculated by the r.le programs. gp=attribute group,
CC=center-to-center distance, CE=center-to-edge distance, EE=edge-to-edge distance.

r.le.dist

MEASURES:
Mean distance
Standard deviation distance
Mean distance by gp
Standard deviation distance by gp
Number of distances by distance class
Number of distances by distance class by gp

METHODS:
Each patch to all adjacent neighbors CC
Each patch to all adjacent neighbors CE
Each patch to nearest patch of same gp CC
Each patch to nearest patch of same gp CE
Each patch to nearest patch of same gp EE
Each patch to nearest patch of different gp CC
Each patch to nearest patch of different gp CE
Patches of 1 gp to nearest of specific gp CC
Patches of 1 gp to nearest of specific gp CE
Patches of 1 gp to nearest of specific gp EE

r.le.patch

ATTRIBUTE:
Mean pixel attribute
Standard deviation pixel attribute
Mean patch attribute
Standard deviation patch attribute
Cover by gp
Density by gp
Total density
Effective mesh number

PATCH SIZE:
Mean patch size
Standard deviation patch size
Mean patch size by gp
Standard deviation patch size by gp
Number by patch size class
Number by patch size class by gp
Effective mesh size
Degree of landscape division

47

Table 1. Continued.

CORE SIZE:
Mean core size
Standard deviation core size
Mean edge size
Standard deviation edge size
Mean core size by gp
Standard deviation core size by gp
Mean edge size by gp
Standard deviation edge size by gp
Number by core size class
Number by edge size class
Number by core size class by gp
Number by edge size class by gp

SHAPE:
 Indices:

Corrected perimeter/area
Perimeter/area
Related circumscribing circle

 Measures:
Mean patch shape
Standard deviation shape
Mean patch shape by gp
Standard deviation shape by gp
Number by shape class
Number by shape class by gp

BOUNDARY COMPLEXITY
Mean twist number
Standard deviation of twist number
Mean omega index
Standard deviation of omega index

PERIMETER
Sum of perimeters
Sum of perimeters by gp
Mean perimeter length
Mean perimeter length by gp
Standard deviation perimeter length
Standard deviation perimeter length by gp

48

Table 1. Continued.

r.le.pixel

DIVERSITY
Richness
Shannon
Dominance
Inverse Simpson's

TEXTURE
 Measures

Contagion (C)
Angular second moment (ASM)
Inverse difference moment (IDM)
Entropy (ENT)
Contrast (CON)

 Methods
2-neighbor: horizontal (2N-H)
2-neighbor: 45 degrees (2N-45)
2-neighbor: vertical (2N-V)
2-neighbor: 135 degrees (2N-135)
4-neighbor: horizontal/vertical (4N-HV)
4-neighbor: diagonal (4N-DIAG)
8-neighbor: (8N)

JUXTAPOSITION
Mean juxtaposition
Standard deviation juxtaposition

EDGE
Sum of edges
Sum of edges by type

49

APPENDICES

50

APPENDIX 1 - LIMITS

A number of limits are embedded in the code. Exceeding these limits may produce
unexpected outcomes.

Number of attributes (only a limit in r.le.pixel) = 800
This number can be changed by editing the r.le.pixel.h file and changing the value of
"MAX" However, the larger this number the slower the program and the more memory
will be required. I have successfully run the program with MAX=5000, but it is slow.

Number of attribute groups = 25
Number of index classes = 25
Number of scales that can be used simultaneously = 15
Number of sites when sampling units are centered over sites = 200
Number of patches:

The number of patches that can be analyzed in any one map is dependent on the
amount of memory (RAM) in the machine. The r.le.patch program is particularly
memory demanding, as the characteristics of each patch (including the location of every
boundary point) must be saved in a "patch list." We have found that r.le.patch can now
analyze about 1 million small patches with 64 Mb of RAM. The r.le.dist program can do
more patches with the same amount of memory.

Size of map:
The size of map that can be analyzed is also dependent on the amount of memory
(RAM) in the machine. We have found that all three analysis programs (r.le.dist,
r.le.patch, r.le.pixel) can now be used to analyze maps that are several thousand rows
by several thousand columns. However, analyses with this size map may be time-
consuming. See appendix 2.

Size of patches:
The size of an individual patch is unlimited, but when the patch is a large, matrix-forming
patch, this may produce slow results, and the program may run out of memory. A matrix
patch occurs when there is a background with a single attribute (e.g., 0) in which are
embedded numerous, smaller patches with different attributes.

51

APPENDIX 2 - TIME NEEDED TO COMPLETE ANALYSES WITH THE R.LE PROGRAMS

The r.le programs may require seconds, minutes or hours to complete a particular
analysis. The amount of time required varies only with the size of the map in the case of
r.le.pixel. In the case of r.le.dist and r.le.patch the amount of time varies with the size of the
map and its complexity (number of patches, size of patches). With the r.le.dist and r.le.patch
programs much of the execution time is spent tracing the patches rather than completing
measurement calculations. Thus, increasing the number of measures that you select will not
dramatically increase the required execution time. On a Pentium III 600 Mhz machine running
Linux it takes approximately 1 second to use r.le.patch with all the measurement options to
analyze a 200 X 200 cell map (sam=W) with 100 patches. The r.le.dist program required about
1 second to analyze the same map. The r.le.pixel program required only 2 seconds for this
map. However, it required about 20 minutes to analyze part of a classified Landsat scene
(about 4000 columns by 3000 rows) containing 24,000 patches using r.le.patch.

Moving window analyses can be extremely time consuming, particularly with r.le.dist and
r.le.patch, where the patches must be traced inside each window. For these two programs, the
time required approximately doubles as the length of a side of the window doubles. Thus a 10
X 10 window requires about twice as much time as a 5 X 5 window. On a Pentium III running
Linux r.le.pixel required 15 seconds to complete a 5 X 5 moving window analysis of a 200 X 200
pixel map, while r.le.patch required approximately 15 seconds for the same window and map,
and r.le.dist required about 8 seconds. Obviously, very large maps will require hours or days to
complete using the moving window. The amount of time required for a moving window analysis
can be determined by starting the analysis and observing the expected completion time, which
will be printed on screen while the program runs. The expected completion time is updated as
the window moves, so allow it to run for awhile to get the best estimate. Most important, don't
forget that you can produce up to 25 maps (25 different measure choices) from a single run of
the moving window. Just list all the choices on the command line when you run the program.
The needed execution time is not affected very much by the number of output maps requested.

52

APPENDIX 3 - EXAMPLES OF R.LE.SETUP FILES

Moving window - file "r.le.para/move_wind"

 3 3 u_w u_l: CELL
 radius of circular moving window

83 73 w_w w_l
 1 3 x0, y0

This particular version of the move_wind file will produce a 3 cell by 3 cell square moving
window which will move over a sampling frame that is 83 columns wide and has 73 rows
starting in column 1 and row 3. Rows begin with row 0 as the top row and columns begin with
column 0 as the leftmost column.

Sampling units - file "r.le.para/units"

 2 # of scales
 2 # of units of scale 1.
 9 9 u_w, u_l of units in scale 1

 4.5 radius of circles in scale 1
 2 2 left, top of unit[1]
26 14 left, top of unit[2]
 3 # of units of scale 2.
20 25 u_w, u_l of units in scale 2

 radius of circles in scale 2
 1 1 left, top of unit[1]
16 4 left, top of unit[2]
12 25 left, top of unit[3]

This particular version of the units file will have two circular sampling units with a radius of 4.5
cells in scale 1 and three 20 column X 25 row rectangular sampling units in scale 2.

Attribute groups - file "r.le.para/recl_tb"

1 3 thru 6 = 1
7 9 20 = 2
end

This particular version of the recl_tb file will produce two groups, one containing the attributes 1,
3, 4, 5, 6 and the second with attributes 7, 9, 20.

Size classes - file "r.le.para/size"

0.00 100.00 200.00 400.00 1000.00 -999 - lower limits

This particular version of the size file will have five size classes (0.0-99.99, 100.00-199.99,

53

200.00-399.99, 400.00-999.99, and 1000.00+).
The units here are cells.

Shape index classes - files "r.le.para/shape_PA," "r.le.para/shape_CPA," or
"r.le.para/shape_RCC" depending on which shape index was chosen. All three files have the
same format:

0.00 0.50 1.00 1.50 2.00 -999 - lower limits

This particular version of the shape index files will have five shape index classes (0.00-0.49,
0.50-0.99, 1.00-1.49, 1.50-1.99, and 2.00+). The units here are the values of the shape
indices. The perimeter/area and corrected perimeter/area indices can vary between 0 and
infinity, but most often are in the range of 0-3 or occasionally up to 5. The related
circumscribing circle index varies between 0-1, so it makes no sense to use index classes
outside this range.

Distance classes - files "r.le.para/dist_cc," "r.le.para/dist_ce," or "r.le.para/dist_ee" depending
on which method of measuring distance is used. All three files have the same format:

0.00 50.00 100.00 -999 - lower limits

This particular version of the distance class file will have three distance classes (0.00-49.99,
50.00-99.99, and 100.00+). The units are cells.

Distances from and to particular groups - file "r.le.para/from_to"
This file is needed when using distance methods m7, m8, or m9 where distance is measured
from patches of one group to patches of another group. The format is:

2 0 end
4 0 end

The "0 end" part is always the same. The "0" is a zero. The from
group is on line 1 (in this case it is group 2) and the to group is on line 2 (in this case it is group
4). The attribute groups must have already been setup (see above) so that groups 2 and 4 are
identified in the r.le.para/recl_tb file.

54

APPENDIX 4- HELP MENUS FOR THE R.LE PROGRAMS

55

R.LE.DIST

Usage:
 r.le.dist [-bntu] map=name [sam=name] [reg=name] [ski=value] [can=value]

[di1=name[,name,...]] [di2=name[,name,...]] [out=name]

Flags:
 -n Output map 'num' with patch numbers
 -t Use 4 neighbor tracing instead of 8 neighbor
 -u Output maps 'units_x' with sampling units for each scale x

Parameters:
 map Raster map to be analyzed
 sam Sampling method (choose only 1 method):
 w=whole map, u=units, m=moving window, r=regions
 options: w,u,m,r
 default: w
 reg Name of regions map, only when sam = r; omit otherwise
 ski Skip m boundary cells to speed up nearest neighbor search
 options: 0-10
 default: 0
 can Use only 'can' candidate patches for faster nearest neighbor search
 options: 1-30
 default: 30
 di1 Distance methods (Choose only 1 method):
 (CC=Center-Center, EE=Edge-Edge, CE=Center-Edge):
 m0 = each patch to all adjacent neighbors CC
 m1 = each patch to all adjacent neighbors CE
 m2 = each patch to nearest patch of same gp CC
 m3 = each patch to nearest patch of same gp CE
 m4 = each patch to nearest patch of same gp EE
 m5 = each patch to nearest patch of any diff. gp CC
 m6 = each patch to nearest patch of any diff. gp CE
 m7 = patches of 1 gp to nearest of specific gp CC
 m8 = patches of 1 gp to nearest of specific gp CE
 m9 = patches of 1 gp to nearest of specific gp EE
 options: m0,m1,m2,m3,m4,m5,m6,m7,m8,m9
 di2 Distance measures:
 n1 = mean dist. n2 = st. dev. dist.
 n3 = mean dist. by gp n4 = st. dev. dist. by gp
 n5 = no. of dist. by dist. class
 n6 = no. of dist. by dist. class by gp
 options: n1,n2,n3,n4,n5,n6
 out Name of output file for individual patch measures, when sam=w,u,r;
 if out=head, then column headings will be printed

56

R.LE.PATCH

Usage:
r.le.patch [-cnptu] map=name [sam=name] [reg=name]

[att=name[,name,...]] [siz=name[,name,...]] [co1=value]
[co2=name[,name,...]] [sh1=name] [sh2=name[,name,...]]
[bnd=name[,name,...]] [per=name[,name,...]] [out=name]

Flags:
-c Output map 'interior' with patch cores (specify co1 & co2)
-n Output map 'num' with patch numbers
-p Include sampling area boundary as perimeter
-t Use 4 neighbor instead of 8 neighbor tracing
-u Output maps 'units_x' with sampling units for each scale x

Parameters:
map Raster map to be analyzed
sam Sampling method (choose only 1 method):

w = whole map u = units m = moving window r = regions
default: w

reg Name of regions map, only when sam = r; omit otherwise
att a1 = mn. pixel att. a2 = s.d. pixel att.

a3 = mn. patch att. a4 = s.d. patch att.
a5 = cover by gp a6 = density by gp
a7 = total density a8 = eff. mesh number
options: a1,a2,a3,a4,a5,a6,a7,a8

siz s1 = mn. patch size s2 = s.d. patch size
s3 = mn. patch size by gp s4 = s.d. patch size by gp
s5 = no. by size class s6 = no. by size class by gp
s7 = eff. mesh size s8 = deg. landsc. division
options: s1,s2,s3,s4,s5,s6,s7,s8

co1 Depth-of-edge-influence in pixels (integer) for use with co2
co2 Core size measures (required if co1 was specified):

c1 = mn. core size c2 = s.d. core size
c3 = mn. edge size c4 = s.d. edge size
c5 = mn. core size by gp c6 = s.d. core size by gp
c7 = mn. edge size by gp c8 = s.d. edge size by gp
c9 = no. by size class c10 = no. by size class by gp
options: c1,c2,c3,c4,c5,c6,c7,c8,c9,c10

sh1 Shape index (choose only 1 index):
m1 = per./area m2 = corr. per./area m3 = rel. circum. circle

sh2 Shape measures (required if sh1 was specified):
h1 = mn. patch shape h2 = s.d. patch shape
h3 = mn. patch shape by gp h4 = s.d. patch shape by gp
h5 = no. by shape class h6 = no. by shape class by gp
options: h1,h2,h3,h4,h5,h6

bnd n1 = mn. twist number n2 = s.d. twist number
n3 = mn. omega index n4 = s.d. omega index
options: n1,n2,n3,n4

per p1 = sum of perims. p4 = sum of perims. by gp
p2 = mn. per. p5 = mn. per. by gp
p3 = s.d. per. p6 = s.d. per. by gp
options: p1,p2,p3,p4,p5,p6

out Name of output file for individual patch measures, when sam=w,u,r;
if out=head, then column headings will be printed

57

R.LE.PIXEL

Usage:
r.le.pixel [-euz] map=name [sam=name] [reg=name]

[att=name[,name,...]] [div=name[,name,...]] [te1=name]
[te2=name[,name,...]] [jux=name[,name,...]] [edg=name[,name,...]]

Flags:
-e Output map 'edge' of edges given a '1' in r.le.para/edge file
-u Output maps 'units_x' with sampling units for each scale x
-z Output map 'zscores' with standardized scores

Parameters:
map Raster map to be analyzed
sam Sampling method (choose only 1 method):

w = whole map u = units m = moving window r = regions
default: w

reg Name of regions map, only when sam = r; omit otherwise
att b1 = mn. pixel att. b2 = s.d. pixel att.

b3 = min. pixel att. b4 = max. pixel att.
options: b1,b2,b3,b4

div d1 = richness d2 = Shannon d3 = dominance d4 = inv. Simpson
options: d1,d2,d3,d4

te1 Texture method (choose only 1 method):
m1 = 2N-H m2 = 2N-45 m3 = 2N-V m4 = 2N-135
m5 = 4N-HV m6 = 4N-DIAG m7 = 8N
options: m1,m2,m3,m4,m5,m6,m7

te2 Texture measures (required if te1 was specified):
t1 = contagion t2 = ang. sec. mom. t3 = inv. diff. mom.
t4 = entropy t5 = contrast
options: t1,t2,t3,t4,t5

jux Juxtaposition measures (weight file in r.le.para needed):
j1 = mn. juxtaposition j2 = s.d. juxtaposition
options: j1,j2

edg e1 = sum of edges e2 = sum of edges by type (need edge file: r.le.para)
options: e1,e2

58

R.LE.SETUP

Usage:
 r.le.setup

 (This command must be run interactively)

59

R.LE.TRACE

Usage:
 r.le.trace [-pt] map=name [out=name]

Flags:
 -p Include sampling area boundary as perimeter
 -t Use 4 neighbor tracing instead of 8 neighbor

Parameters:
 map Raster map to be analyzed
 out Name of output file to store patch data

60

APPENDIX 5 - TESTING AND A WARNING

The r.le. programs have been tested extensively using small maps with known properties,
where measurement values are calculated by hand and then compared to program output.
There is thus a strong likelihood that the output values are correct. This comparison work has
been done with both aggregate measures (e.g., Shannon diversity) for the whole map and with
moving windows. All of the simpler moving windows (e.g., mean patch size) have been
checked. Not all possible moving windows have been tested, as this is infeasible for the
complex calculations involved, for example, in the texture measures. For these measures, only
spot checks of the moving windows have been made. However, the same algorithm is used as
when sampling is by region, by unit, or for the whole map and this algorithm has been shown to
work correctly in those cases.

Less testing is possible or has been completed with larger maps, since properties of larger
maps are often not known a priori. Where datasets are available, these have been used. Over
the nearly 10 years of use, I have heard of no confirmed calculation errors.

The user is cautioned, however, that no warranty, expressed or implied, can be provided that
the output of the r.le programs is correct.

Of course, I am always interested in hearing of results that definitely confirm the correctness or
incorrectness of output from r.le. Send me an email: BAKERWL@UWYO.EDU

