Fish distribution dynamics in the Aghanashini estuary of Uttara Kannada, west coast of India

Mahima Bhat^{1,2}, V. N. Nayak², M. D. Subash Chandran¹ and T. V. Ramachandra^{1,*}

¹Energy and Wetlands Research Group, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India ²Department of Marine Biology, Karnataka University, Kodibag, Karwar 581 301, India

Fish diversity (77 species) in the Aghanashini River estuary of the Indian west coast is linked to variable salinity conditions and zones I, II and III for high, medium and low salinity respectively. Zone I, the junction between Arabian Sea and the estuary, had all species in yearly succession – due to freshwater conditions in monsoon to high salinity in pre-monsoon. The medium (zone II) and low (zone III) salinity mid and upstream portions had maximum of 67 and 39 fish species respectively. Maintenance of natural salinity regimes in estuary, among other ecological factors, is critical for its fish diversity.

Keywords: Aghanashini estuary, fish diversity, freshwater, osmo regulation, salinity.

ESTUARY, a tidally influenced transition zone between river and sea, is a unique ecosystem. The upstream limit to which the river turns brackish (to a minimum of 0.5 ppt) is considered the upper limit of the estuary. Sedimentary movements and deposits happen in the estuary due to constant intermingling of water from the land and the ocean^{1,2}. Tropical estuaries with microhabitats like mangroves, mud flats, marshes, reed swamps, shell beds, etc. and varied salinity conditions are good places for fishery³. The vastness of the ocean notwithstanding, several marine fishes use estuaries as nurseries for their young or feeding grounds for sub-adults and adults. Root entanglement of mangroves provides security for many fishes from predation and fishing by humans⁴⁻⁶. Estuary is often dominated by euryhaline and to lesser extent by stenohaline fishes tolerant of variable and narrow ranges of salinity respectively⁷. Estuaries today are heavily exploited and are among the most threatened ecosystems. The present study on fish diversity and distribution in relation to environmental factors, particularly salinity, in the Aghanashini River estuary, is a pioneering one for Karnataka.

The 121 km long, west-flowing Aghanashini River from central Western Ghats of southwest India joins the Arabian Sea forming an estuary of about 48 sq. km (lat. 14.3910–14.5850 N, long. 74.3040–74.5160 E) in the Kumta taluk of Uttara Kannada district (Figure 1). The

Altogether 77 fish species from 47 families (Table 1) were recorded. Of them, 17% was basically marine, 57% marine–estuarine and 24% from wide ranging habitats, sharing even freshwater (Figure 2). The pearl-spot (*Etroplus suratensis*) was the only true estuarine species. The Asian swamp-eel (*Monopterus albus*) that shifts between freshwater and estuary was another exception. Zone I, Aghanashini, was the richest with all 77 species recorded in the course of the study. Some fishes, notably mangrove snappers, sea bass, ponyfish, perchlet, mullets, eels, etc.

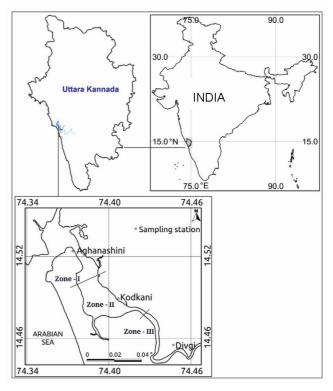
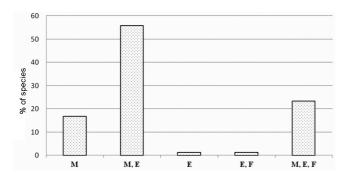


Figure 1. Aghanashini estuary with sampling stations.

study period (June 2011-May 2012) was divided into three quarters, monsoon (June-September), post-monsoon (October-January) and pre-monsoon (February-May). As a preliminary step pre-monsoon high-tide salinity was measured, at 2 km intervals, and the estuary was divided into three salinity zones: 'high' (>20 ppt), 'medium' (10-20 ppt) and 'low' (<10 ppt). Catches by fishermen were monitored for one year. Monthly monitoring of environmental parameters like salinity, dissolved oxygen (DO), pH, air and water temperature during high tides, was carried out in three stations - Aghanashini, Kodkani and Divgi-representing high, medium and low salinity zones respectively. Fish specimens collected from five consecutive cast-net hauls from each zone, month-wise, by fishermen were identified using taxonomic keys^{8–12}. Similarity of fish assemblages on temporal scale from salinity zones was measured using Bray-Curtis index¹³. Fish distribution related to environmental variables was obtained using canonical correspondence analysis (CCA)¹⁴.

^{*}For correspondence. (e-mail: cestvr@ces.iisc.ernet.in)

RESEARCH COMMUNICATIONS


 Table 1. Checklist of Ichthyofauna observed in Aghanashini estuary (categorization based on www.fishbase.org, accessed on 19 January 2014)

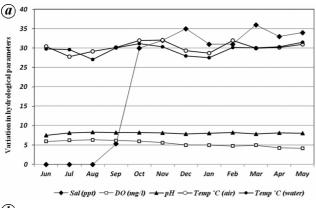
Code used	Family	Scientific name	Common name	Local name (Kannada)
Marine				
3	Carangidae	Carangoides praeustus	Brownback trevally	Haluguruku
4	Scombridae	Rastrelliger kanagurta	Indian Mackerel	Bangade
5	Nemipteridae	Nemipterus japonicus	Japanese thread fin bream	Rane menu
6	Serranidae	Cephalopholis boenak	Blue lined coral cod	Gobrya, Kallumurge
7	Bothidae	Crossorhombus azureus	Blue spotted flounder	Masur leppe
8	Paralichthyidae	Pseudorhombus javanicus	Javan flounder	Nengu
9	Scombridae	Scomberomorus commerson	Narrow-barred Spanish mackerel	Iswana
0	Stromatidae	Pampus argenteus	Silver pomfret	Bili manji
2	Rhinobatidae	Glaucostegus halavi	Halavi ray	Balagende torke
2	Siganidae	Siganus argenteus	Streamlined spinefoot	Baana
7	Scaridae	Parrot fish	_	_
8	Batrachoididae	Colletteichthys dussumieri	Flat toad fish	Gonke, Goke
6	Serranidae	Ephinephelus bleekeri	Bleeker's reef cod	Gobrya
Iarine, estua	rine			
1	Clupeidae	Sardinella fimbriata	Fringescale sardinella	Pedi
2	Engraulidae	Stolephorus indicus	Indian anchovy	Belanji
2	Carangidae	Carangoids chrysophrys	Brownback trevally	Haluguruku
3	Ariidae	Arius arius	Threadfin sea catfish	Bili sady
4	Siganidae	Siganus vermiculatus	Vermiculated spinefoot	Baana, Padiyar
5	Tetraodontidae	Arothron stellatus	Starry blow fish	Chonja
6	Engraulidae	Stolephorus commersonnii	Commerson's anchovy	Dodda danashi
0 7	Platycephalidae	Grammoplites scaber	Rough flathead	Vadati
8		Sillago sihama	Silver sillago	
	Sillaginidae	ě	e e	Nogla
9	Sciaenidae	Otolithes ruber	Tigertooth croaker	Banagu, Dodi
0	Sphyraenidae	Sphyraena barracuda	Great barracuda	Onakaandi
1	Lactariidae	Lactarius lactarius	False trevally	Samdale
2	Belonidae	Strongylura leiura	Banded needle fish	Burkaandi
3	Carangidae	Megalaspis cordyla	Torpedo trevally	Guruku
4	Carcharhinidae	Scoliodon laticaudus	Shark	Sora
5	Platacidae	Drepane punctata	Spotted sickle fish	Chandaka
6	Carangidae	Caranx ignobilis	Giant kingfish	Guruku
7	Dasyatidae	Himantura bleekeri	Bleeker's whip ray	Hola
8	Clupeidae	Opisthopterus tardoore	Tardoore	Pachage
9	Leiognathidae	Leiognathus splendens	Blacktip ponyfih	Guruku
0	Lobotidae	Lobotes surinamensis	Tripletail	Pavade
1	Engraulidae	Thryssa mystax	Moustached thryssa	Vaintali
3	Leiognathidae	Secutor insidiator	Pugnose ponyfish	Guruku
5	Trichiuridae	Trichiurus lepturus	Large head hairtail	Barik hamle
8	Sphyraenidae	Sphyraena obtusata	Obtuse barracuda	Hallin kaandi
0	Cynoglossidae	Cynoglossus macrostomus	Malabar sole	Leppe
1	Platacidae	Platax orbicularis	Orbicular bat fish	Manji
3	Engraulidae	Thryssa malabarica	Malabar thryssa	Vaintali
5	Engraulidae	Thryssa setirostris	Long jaw thryssa	Vaintali
6	Carangidae	Atule mate	Yellowtail scad	Guruku
7	Pempheridae	Pempheris moluca	Mollucan sweeper	Ramachi
8	Pomadasyidae	Pomadasys maculatus	Saddle grunt	Guruku
0	Ariidae	Arius Caelatus	Engraved sea catfish	Gorde Sady
0 1	Stromatidae	Parastromateus niger	Black pomfret	Kari manji
2	Sciaenidae Sciaenidae	_	Reeve's croaker	Mooru hallin banagu
		Chrysochir aureus		•
3	Lutjanidae	Lutjanus johni	John's snapper	Hottekemsa
4	Lutjanidae	Lutjanus ruselli	Russell's snapper	Kemsa
4	Soleidae	Synaptura commersonnii	Commerson's sole	Leppe
6	Sciaenidae	Johnius belangeri	Belanger's croaker	Banagu
4	Hemiramphidae	Hemirhaphus far	Black barred half beak	Toli
7	Triacanthidae	Tricanthus biaculeatus	Short-nosed tripod fish	Kuduremeenu, kadbale
9	Cynoglossidae	Paraplagusia biliniata	Double lined tongue sole	Leppe
4	Gobiidae	Trypauchen vegina	Burrowing goby	Bombale
stuarine				
6	Cichilidae	Etroplus suratensis	Pearl spot	Kagalse

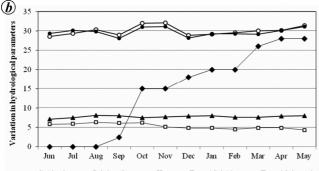
(Contd)

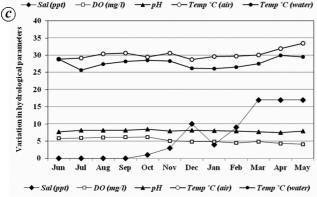
Table 1. (Contd)

Code used	Family	Scientific name	Common name	Local name (Kannada)
Estuarine fres	shwater			
58	Synbranchidae	Monopterus albus	Asian swamp eel	Kolav
Marine, estua	rine, freshwater			
11	Scatophagidae	Scatophagus argus	Spotted scat	Hulka
55	Lutjanidae	Lutjanus argentimaculatus	Mangrove red snapper	Eri
57	Gobiidae	Glossogobius giuris	Tank goby	Bili Mandli
59	Gobiidae	Acentrogobius griseus	Grey goby	Kari mandli
61	Mugilidae	Mugil cephalus	Flathead grey mullet	Madle
52	Mugilidae	Liza parsia	Gold spot mullet	Madle
63	Polynemidae	Eleutheronema tetradactylum	Four finger threadfin	Raws, Ramachi
64	Teraponidae	Terapon jarbua	Cresent pearch	Kumbari, Garge
50	Gerridae	Gerres filamentosus	Threadfin silver biddy	Girbaingi
65	Gerridae	Gerres limbatus	Saddleback silver biddy	Mundbaingi
66	Leiognathidae	Secutor ruconius	Deep pugnose ponyfish	Guruku
67	Centropomidae	Lates calcarifer	Barramundi, Seabass	Kurude
69	Ambassidae	Ambassis ambassis	Commersons glassy perchlet	Burante
70	Cynoglossidae	Cynoglossus punticeps	Spotted tongue sole	Leppe
71	Ophichthidae	Pisoodonophis cancrivorus	Snake eel	Aragotka
73	Ophichthidae	Lamnostoma polyophthalma	Ocellated sand-eel	Hemalga
72	Apogonidae	Apogon hyalosoma	Humpbacked cardinal fish	Burante
75	Clupeidae	Tenualosa ilisha	River shad	Malati pedi
Uncertain hal	oitat			
49	Scorpinidae	Scorpeana haplodactylus	_	_

Figure 2. Habitat combinations of estuarine fishes of Aghanashini (based on www.fishbase.org accessed on 19 January 2014). M, Marine; M, E, Marine, estuarine; E, Estuarine; E, F, Estuarine, freshwater; M, E, F, Marine, estuarine, freshwater.


inhabited here throughout monsoon to pre-monsoon. The marine-estuarine group, mainly anchovis, croakers, barracudas, snappers, sillagos, black pomfrets, soles, etc. kept away from zone I during monsoon. Such euryhaline fishes entered the zone from the sea only from post-monsoon with rising salinity. The stenohaline marine fishes, notably mackerels, silver pomfrets and cods appeared in Aghanashini when salinity levels peaked in the pre-monsoon months. The mid-estuarine zone II (Kod-kani) had 67 species, most of them euryhaline. Stenohaline marine fish avoided this medium-salinity zone. Only 39 species occurred in zone III (Divgi), the interphase with freshwater. They were mostly a subset of zone II and moved freely between the sea and the estuary; some even

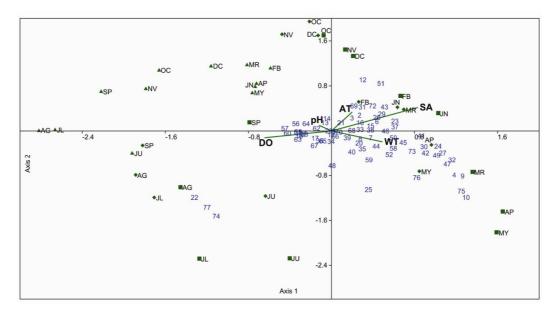

entered freshwater. Exclusive freshwater species were absent in the estuary even during the rainy season.


The families Carangidae and Engraulidae had five species each; Sciaenidae had four species; Clupeidae, Cynoglossidae, Gobiidae, Leiognathidae and Lutjanidae had three species each. Eleven families were represented by 2 species, while 28 had only 1 each. A comparable study from Ponnani estuary in Kerala had 112 species from 53 families¹⁵. Carangidae with eight, Leiognathidae with seven and Engraulidae with six species each followed. From Kodungallur–Azhikode estuary of Kerala, 63 fishes of 37 families were reported. Mugilidae had five and Engraulidae, Carangidae, Cyprinidae, Cichilidae and Gerridae had three each¹⁶. From Yedayanthittu estuary in Tamil Nadu, 75 species of 37 families were reported¹⁷.

Monthly variations in environmental parameters like salinity, pH, DO, water and air temperatures of the three zones are depicted in Figure 3 *a*–*c* respectively. Heavy rains (2500–5000 mm), in the catchment areas, caused salinity drop to nil or very low; from marginal rise in September to zone-wise peaks were attained in March–May. Similar pattern was observed in the Naaf estuary of Bangladesh, by Chowdhury *et al.* ¹⁸, when July rainfall (1159 mm) caused salinity to decline to 0–8.6 ppt.

Aghanashini estuary had maximum DO (6.32 mg/l) during monsoon to early post-monsoon. It was similar in Vellar, Tamil Nadu¹⁹. Pre-monsoon saw highest water temperature in Aghanashini (31.5°C) and lowest (25.6°C) during monsoon. Water temperature was lower than air temperature, which was higher in October, April and May.

Figure 3. Hydrological parameters observed at (a) zone I (Aghanashini), (b) zone II (Kodkani) and (c) zone III (Divgi) during June 2011–May 2012.


When 77 species and 5 environmental variables from Aghanashini estuary were selected for CCA analysis (Figure 4), the first two components had eigenvalues, $\lambda 1 = 0.119$, $\lambda 2 = 0.051$. Axis 1 accounted for 55.32% of the cumulative percentage of variance in species abundance with environmental parameters and was positively correlated with salinity, water and air temperatures and negatively correlated with DO and pH. Axis 2 explained 24.1% variance and was positively correlated with salinity, pH and air temperature, and negatively with DO and water temperature. CCA showed most fishes exhibiting positive correlation with salinity. Few like *Strongylura leiura*, *Hemirhampus far* and parrot fish showed negative correlation with salinity as these occurred mainly during monsoon.

Bray-Curtis analysis of monthly fish assemblage distinguished two (A and B) major groups (Figure 5). Cluster A was grouped into all the seasons of zone III (Divgi) and three months (October, November and December) of zone II (Kodkani). In this group fishes such as Sillago sihama, Otolithes ruber, Lutjanus johni, Lutjanus ruselli, Lutjanus argentimaculatus, Etroplus suratensis, Glossogobius giuris, Gerres filamentosus, Mugil cephalus, Terapon jarbua were shared between zones II and III. These are among well-known indicators of highly variable estuarine salinity conditions. Cluster B consists of two sub-groups, namely cluster B₁ and B₂; B₁ is further sub-divided into B₁-I and B₁-II. B₁-I clustered with postmonsoon season of zone I (Aghanashini) and premonsoon season of zone II. Clustering of this nature reveals that many estuarine fishes have their own preferable salinity regimes necessitating constant movement of fishes within the estuary in adjustment with dynamic salinity conditions depending on mixing of fresh and salt waters. The cluster B₁-II shows that the fish assemblages are 92% similar and closely related to the pre-monsoon (April and May) of zone I. Predominantly marine fishes like Rastrelliger kanagurta, Scomberomorus commerson and Pampus argenteus get into this high-salinity (34 ppt) assemblage. However, George et al. 20 had reported mackerels (R. kanagurta) from Netravati estuary of Mangalore during January in lesser salinity (14.10–23.50 ppt).

Estuarine life is more challenging than marine mainly because of fluctuating salinity. Fishes of specific salinity ranges keep shifting positions within their respective ranges. The osmoregulation mechanism in fishes and species-specific operating ranges in relation to salinity are of great interest to fish physiologists^{21,22}. Through osmoregulation the fish maintains an internal balance of salt and water within the cells when there is difference in salinity between internal and external conditions. Various cellular-level mechanisms exist safeguarding fishes from high salinity and fluctuations in salinity^{21–25}.

The estuarine–freshwater fish Seabass (*Lates calcarifer*) requires greater depths (10–15 m), hardly available in the estuary, and higher salinity conditions (30–32 ppt) for gonadial maturity, making it migrate from the river into the sea for spawning during monsoon. The spawning happens in September and the larvae move into the estuary for further development²⁶.

The Aghanashini study has notable similarity with works in the Caete River estuary²⁷ of Brazil. Both the basins have hot and humid weather, five to six rainy months and annual rainfall exceeding 2500 mm. In both seasonal salinity fluctuations appeared to be the main factor that structured fish assemblage in the entire estuarine system. At least 85% of the 82 species captured by the artisanal fishers of the adjoining Brazilian coast required estuarine conditions to complete their life cycle. While the study reveals that 74 of the 77 species recorded from Aghanashini used sea as a common habitat, the estuary

Figure 4. Canonical correspondence analysis of Aghanashini estuary on fish species numbers and month-wise environmental parameters. JN, January; FB, February; MR, March; AP, April; MY, May; JU, June; JL, July; AU, August; SP, September; OC, October; NV, November; DC, December. Square indicates zone I with corresponding month; diamond indicates zone II with corresponding month and triangle indicates zone III with corresponding month. Numbers = Fish species; Line = Environmental parameters.

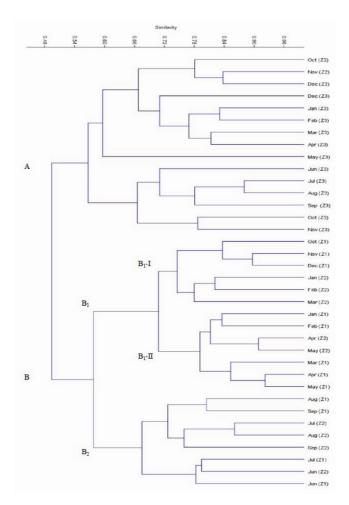


Figure 5. Bray-Curtis clustering of fish species in Aghanashini estuary.

plays a significant role in their lives highlighting the importance of its conservation.

Tropical estuaries in their natural states are rich in fisheries. Of the prominent environmental parameters considered in the study, salinity was the most decisive in fish distribution. The estuary as such had hardly any exclusive fish, with minor exceptions. Zone I closest to the sea had highest diversity as it experienced lowest salinity during monsoon and highest during pre-monsoon, facilitating seasonal fish succession from low- to highsalinity species; many euryhaline fishes with wider salinity tolerance range occupied the zone throughout the year. There is also need to protect estuarine microhabitats like mangroves, sedge areas, mud-flats, shell-beds, etc. for healthy assemblage of fishes. As regards salinity many estuaries of the west coast are seriously affected by execution of hydro-electric projects, the water releases from which adversely affect salinity regimes with adverse consequences on fish diversity and fisheries itself. Fishery collapse has happened in the Sharavathi estuary of Uttara Kannada, which has only 29 fin fish species, unlike 77 in Aghanashini, attributed to year-round salinity drop due to constant freshwater releases from upstream hydro-electric projects²⁸. River diversion from the Western Ghats, with scanty consideration for environment, particularly estuarine ecology, is a burning topic today.

^{1.} Pritchard, D. W., Observations of circulation in coastal plain estuaries. In *Estuaries* (ed. Lauff, G. H.), American Association for the Advancement of Science, 1967, vol. 83, pp. 37–44.

RESEARCH COMMUNICATIONS

- Elliotta, M. and McLusky, D. S., The need for definitions in understanding estuaries. *Estuarine Coastal Shelf Sci.*, 2002, 55, 815–827
- 3. Breine, J., Maes, J., Ollevier, F. and Stevan, M., Fish assemblages across a salinity gradient in the Zeeschelde estuary (Belgium). *Belg. J. Zool.*, 2011, **141**, 21–44.
- Cronin, L. E. and Mansueti, A. J., The biology of the estuary. In Proceedings of the Symposium on the Biological Significance of Estuaries, Sport Fishing Institute, Washington DC, 1971, pp. 24–39.
- Day, J. H., Blaber, S. J. M. and Wallace, J. H., Estuarine fishes. In Estuarine Ecology in Particular Reference to Southern Africa (ed. Day, J. H.), Balkema, Rotterdam, 1981, pp. 197–121.
- Dando, P. R., Reproduction in estuarine fishes. In Fish Reproduction: Strategies and Tactics (eds Potts, G. W. and Wootton, R. J.), Academic Press, London, 1984, pp. 155–170.
- Blaber, S. J. M., Tropical Estuarine Fishes: Ecology, Exploitation and Conservation, Fish and Aquatic Resources Series, Blackwell Science, Oxford, 2000, vol. 7, pp. 1–372.
- Day, F., The Fauna of British India including Ceylon and Burma, Today & Tomorrow Printers and Publishers, New Delhi, Reprinted 1989, vols I and II.
- 9. Talwar, P. and Jhingran, A., *Inland Fishes of India and Adjacent Countries*, Oxford & IBH, New Delhi, 1991, vols 1 and 2.
- Munro, S. R., The Marine and Freshwater Fishes of Ceylon, Biotech Books, Tri Nagar, Delhi, 2000, pp. 1–349.
- Jayaram, K. C., In FAO species identification sheets for fishery purposes (eds Fischer, W. and Bianchi, G.), Western Indian Ocean fishing area 51. FAO, Rome, 1984, vols I–VI.
- 12. www.fishbase.org (accessed on 14 February 2013).
- Bray, J. R. and Curtis, J. T., An ordination of the upland forest communities of Southern Wisconsin. *Ecol. Monog.*, 1957, 27, 325–349.
- Ter Braak, C. J. F., Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. *Biometrics*. 1985. 41, 859–873.
- Bijukumar, A. and Sushama, S., Ichthyofauna of Ponnani estuary, Kerala. J. Mar. Biol. Assoc. India, 2000, 42, 182–189.
- Jayachandran, P. R., Nandan, S. B., Sreedevi, O. K. and Sanu, V. F., Influences of environmental factors on fish assemblage in the Tropical Estuary of Southwest coast of India. A case study of Kodungallur–Azhikode–Estuary. *Int. J. Mar. Sci.*, 2013, 3, 4–16.
- 17. Ramanujam, M. E. and Anbarasan, R., A preliminary report on the Ichthyofauna of Yedayanthittu Estuary (Tamil Nadu, India) and rivulets draining into it. *J. Threat. Taxa*, 2009, 1, 287–294.
- Chowdhury, M. S. N., Hossain, M. S., Das, N. G. and Barua, P., Environmental variables and fisheries diversity of the Naaf River Estuary, Bangladesh. J. Coastal Conserv., 2010, 15, 163–180.

- 19. Brinda, S., Srinivasan, M. and Balakrishnan, S., Studies on diversity of fin fish larvae in Vellar Estuary, southeast coast of India. W. J. Fish Mar. Sci., 2010, 2, 44-50.
- George, P. C., Dhulkhed, M. H. and Ramamohana Rao, V., Observations on the mackerel fishery of the Netravali Estuary, west coast, South India. J. Bombay Nat. Hist. Soc., 1959, 56, 32–38.
- McCormick, S. D. and Bradshaw, D., Hormonal control of salt and water balance in vertebrates. *Gen. Comp. Endocrinol.*, 2006, 147, 3–8.
- Evans, D. A., brief history of the study of fish osmoregulation: the central role of the Mt. Desert Island Biological Laboratory. Front. Physiol., 2010, 1, 1–10.
- Evans, D. H., Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295, 704-713.
- Nordlie, F. G., The influence of environmental salinity on respiratory oxygen demands in the euryhaline teleost, *Ambassis* interrupt a bleeker. *Comp. Biochem. Physiol. Part A: Physiol.*, 1978, 59, 271–274.
- Plaut, I., Resting metabolic rate, critical swimming speed and routine activity of the euryhaline Cyprionodontid, Aphanius dispar, acclimated to a wide range of salinities. *Physiol. Biochem. Zool.*, 2000. 73. 590–596.
- Mathew, G., Taxonomy, identification and biology of Seabass (*Lates calcarifer*). In National Training on 'Cage Culture of Seabass', CMFRI, Kochi, 2009, pp. 38–43.
- 27. Barletta, M., Barletta-Bergan, A., Saint-Paul, U. and Hubold, A., The role of salinity in structuring the fish assemblages in a tropical estuary. *J. Fish Biol.*, 2005, **66**, 45–72.
- Ramachandra, T. V., Subash Chandran, M. D., Joshi, N. V., Mahima, B., Prakash, N. M. and Sreekanth, N. Estuarine fish diversity and livelihoods in Uttara Kannada district, Karnataka State. Sahyadri Conservation Series 34, ENVIS Technical Report 64, CES, Indian Institute of Science, Bangalore, 2013, pp. 1–100.

ACKNOWLEDGEMENTS. We thank the Ministry of Environment and Forests, Government of India and Indian Institute of Science, Bangalore for financial and infrastructural support. We also thank Kusuma Neelakantan, Geeta Sasikumar and Prashant for guidance in fish identification and Balachandran, Boominathan, Praksah Mesta, Shrikanth Naik and Vishnu Mukri for help.

Received 25 April 2013; revised accepted 26 April 2014