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Abstract— Many shallow landslides are triggered by heavy 

rainfall on hill slopes resulting in enormous casualties and huge 
economic losses in mountainous regions. Hill slope failure 
usually occurs as soil resistance deteriorates in the presence of 
the acting stress developed due to a number of reasons such as 
increased soil moisture content, change in land use causing 
slope instability, etc. Landslides triggered by rainfall can 
possibly be foreseen in real time by jointly using rainfall 
intensity-duration and information related to land surface 
susceptibility. Terrain analysis applications using spatial data 
such as aspect, slope, flow direction, compound topographic 
index, etc. along with information derived from remotely 
sensed data such as land cover / land use maps permit us to 
quantify and characterise the physical processes governing the 
landslide occurrence phenomenon. In this work, the probable 
landslide prone areas are predicted using two different 
algorithms – GARP (Genetic Algorithm for Rule-set 
Prediction) and Support Vector Machine (SVM) in a free and 
open source software package - openModeller. Several 
environmental layers such as aspect, digital elevation data, 
flow accumulation, flow direction, slope, land cover, compound 
topographic index, and precipitation data were used in 
modelling. A comparison of the simulated outputs, validated by 
overlaying the actual landslide occurrence points showed 92% 
accuracy with GARP and 96% accuracy with SVM in 
predicting landslide prone areas considering precipitation in 
the wettest month whereas 91% and 94% accuracy were 
obtained from GARP and SVM considering precipitation in 
the wettest quarter of the year.             
 

Index Terms—Landslide, GARP, SVM, openModeller  

I. INTRODUCTION 
andslides are one of the most widespread natural 
hazards on Earth causing casualties and property loses. 
They are sudden hydrogeomorphic events due to the 

combination of i) predisposing factors (e.g. lithology and  
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morphology), ii) triggering factors (e.g. excessive and 
intense precipitations) and iii) accelerating factors (e.g. 
human activities altering natural slope stability) [1]. Among  
landslide typologies, shallow landsliding is common on 
steep topographies covered by colluvial or residual soils 
whose texture can vary from sand to clayey silt [2], playing 
a significant role in hill slope denudation and catchment 
sediment dynamics. The possible time and locations where 
landslides are likely to occur should thus be identified in 
advance in order to avoid or reduce the harm. In this regard, 
establishing a landslide warning system which provides 
information for evacuation and hazard mitigating is a top 
priority. 
  
Prediction of rainfall-triggered hill slope disasters has relied 
mostly on the valley slope [3 and 4], rainfall intensity and 
duration that can cause hill slope failure [5, 6, 7 and 8]. 
Recently, theoretical models have been developed to predict 
landslide susceptibility based on watershed topographic, 
geologic and hydrological variables as well as changes in 
landuse [9, 10, 11, 12, 13 and 14]. The rapidly growing 
availability of relatively detailed digital elevation data, 
coupled with simple slope-instability mechanism and hill 
slope hydrological models, has led to advances in 
physically-based modeling of shallow landslide hazard [9, 
15]. Casadei et al., [16] proposed a landslide warming 
system using a slope-instability analysis and a hydrological 
model to predict the time and location of landslides that 
were verified using historical data of landslide events for 
Montara Mountains of California from 1953–1998 [17]. 
 
Given the complex spatial dynamics of the process, most of 
the hazard evaluation tools make use of Geographical 
Information Systems (GIS), capable of geospatial and 
multitemporal data integration. The availability of digital 
elevation models (DEMs) and precipitation data at higher 
spatial and temporal resolution [1] encourage the 
development of more sophisticated techniques for shallow 
landslide hazard modelling [9, 15, 18, 19, 20, 21 and 13]. 
Several of these methods are based on the infinite slope 
stability equation [22] coupled with hydrological models 
(e.g. [9, 15 and 13]), extensively applied for the estimation 
of spatially variable soil wetness (e.g. [23, 24 and 25]). 
SHALSTAB [9 and 26] is one of these models. Various 
models have been developed in order to assess landslide 
incidence potential [27, 28, 29 and 30]. Among these 
techniques, deterministic, heuristic and statistical methods 
are the most common ones. Deterministic methods deal with 
the estimation of quantitative values of stability variables, 
over a defined area where the landslide types are simple 
with homogeneous intrinsic properties [31]. The required 
data include soil strength, depth below the terrain surface, 
soil layer thickness, slope angle and water pressure. These 
methods have been employed in translational landslides 
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studies [32] and are applicable at large scale over small 
areas. One of the main drawbacks of these methods is their 
high degree of oversimplification when the data are 
incomplete. Another problem is that the data requirements 
for deterministic models can be prohibitive, and frequently 
it is impossible to acquire the input data necessary to use the 
model effectively. 
 
In this context, the present study explores the suitability of 
pattern recognition techniques to predict the probable 
distribution of landslide occurrence points based on several 
environmental layers along with the known points of 
occurrence of landslides. The aims of the study are: 

i.) to apply and evaluate Genetic Algorithm for Rule-
set Prediction and Support Vector Machine based 
models for predicting landslides; 

ii.) to compare and assess the results of these analyses; 
iii.) to suggest management strategies for preventing 

potential losses. 
 
The model utilises precipitation and six site factors 
including aspect, DEM, flow accumulation, flow direction, 
slope, land cover, compound topographic index and 
historical landslide occurrence points. Both precipitation in 
the wettest month and precipitation in the wettest quarter of 
the year were considered separately to analyse the effect of 
rainfall on hill slope failure for generating scenarios to 
predict landslides. 

II. METHODS 

A. Genetic Algorithm for Rule-set Prediction (GARP): 
GARP is based on genetic algorithms originally meant to 
generate niche models for biological species. In this case, 
the models describe environmental conditions under which 
the species should be able to maintain populations. GARP is 
used in the current work here to predict the locations 
susceptible for landslides with the known landslide 
occurrence points.  

For input, GARP uses a set of point localities where the 
landslide is known to occur and a set of geographic layers 
representing the environmental parameters that might limit 
the landslide existence. Genetic Algorithms (GAs) are a 
class of computational models that mimic the natural 
evolution to solve problems in a wide variety of domains. 
GAs are suitable for solving complex optimisation problems 
and for applications that require adaptive problem-solving 
strategies. They are also used as search algorithms based on 
mechanics of natural genetics that operates on a set of 
individual elements (the population) and a set of 
biologically inspired operators which can change these 
individuals. It maps strings of numbers to each potential 
solution and then each string becomes a representation of an 
individual. Then the most promising in its search is 
manipulated for improved solution [33]. The model 
developed by GARP is composed of a set of rules. These set 
of rules is developed through evolutionary refinement, 
testing and selecting rules on random subsets of training 
data sets. Application of a rule set is more complicated as 
the prediction system must choose which rule of a number 
of applicable rules to apply. GARP maximises the 

significance and predictive accuracy of rules without 
overfitting. Significance is established through a χ2 test on 
the difference in the probability of the predicted value 
before and after application of the rule. GARP uses 
envelope rules, GARP rules, atomic and logit rules. In 
envelope rule, the conjunction of ranges for all of the 
variables is a climatic envelope or profile, indicating 
geographical regions where the climate is suitable for that 
entity, enclosing values for each parameter. A GARP rule is 
similar to an envelope rule, except that variables can be 
irrelevant. An irrelevant variable is one where points may 
fall within the whole range. An atomic rule is a conjunction 
of categories or single values of some variables. Logit rules 
are an adaptation of logistic regression models to rules. A 
logistic regression is a form of regression equation where 
the output is transformed into a probability [34]. 

B.  Support Vector Machine (SVM): SVM are supervised 
learning algorithms based on statistical learning theory, 
which are considered to be heuristic algorithms [35]. SVM 
map input vectors to a higher dimensional space where a 
maximal separating hyper plane is constructed. Two parallel 
hyper planes are constructed on each side of the hyper plane 
that separates the data. The separating hyper plane 
maximises the distance between the two parallel hyper 
planes. An assumption is made that the larger the margin or 
distance between these parallel hyper planes, the better the 
generalisation error of the classifier will be. The model 
produced by support vector classification only depends on a 
subset of the training data, because the cost function for 
building the model does not take into account training 
points that lie beyond the margin [35]. 
 
In order to classify n-dimensional data sets, n-1 dimensional 
hyper plane is produced with SVMs. As it seen from Fig. 1 
[35], there are various hyper planes separating two classes 
of data. However, there is only one hyper plane that 
provides maximum margin between the two classes [35] 
(Fig. 2), which is the optimum hyper plane. The points that 
constrain the width of the margin are the support vectors. 
 
In the binary case, SVMs locates a hyper plane that 
maximises the distance from the members of each class to 
the optimal hyper plane. If there is a training data set 
containing m number of samples represented by {xi, yi}      
(i =1, ... , m), where x ε RN, is an N-dimensional space, and    
y ε {-1, +1} is class label, then the optimum hyper plane 
maximises the margin between the classes. As in Fig. 3, the 
hyper plane is defined as (w.xi + b = 0) [35], where x is a 
point lying on the hyper plane, parameter w determines the 
orientation of the hyper plane in space, b is the bias that the 
distance of hyper plane from the origin. For the linearly 
separable case, a separating hyper plane can be defined for 
two classes as: 
 
w . xi + b ≥ +1 for all y = +1                                 (1) 
w . xi + b ≤  -1 for all y = -1                                        (2) 
 
These inequalities can be combined into a single inequality: 
yi (w. xi + b ) – 1 ≥ 0               (3) 
The training data points on these two hyper planes, which 
are parallel to the optimum hyper plane and defined by the 
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functions w. xi + b = ±1, are the support vectors [36]. If a 
hyper plane exists that satisfies (3), the classes are linearly 
separable. Therefore, the margin between these planes is 
equal to 2/||w|| [37]. As the distance to the closest point is 
2/||w||, the optimum separating hyper plane can be found by 
minimizing ||w||2 under the constraint (3). 
 

 
Fig. 1. (a) Hyper planes for linearly separable data, (b) Optimum hyper 

plane and support vectors [35]. 
 
 

 
Fig. 2. Support vectors and optimum hyper plane for the binary case of 

linearly separable data sets [35]. 
 

Thus, determination of optimum hyper plane is required to 
solve optimisation problem given by: 
 
min(0.5*||w||2 )                (4) 
 
subject to constraints,  
 
yi (w. xi + b ) ≥ -1   and yi  ε {+1, -1}                      (5) 
 
As illustrated in Fig. 3 (a) [35], nonlinearly separable data is 
the case in various classification problems as in the 

classification of remotely sensed images using pixel 
samples. In such cases, data sets cannot be classified into 
two classes with a linear function in input space. Where it is 
not possible to have a hyper plane defined by linear 
equations on the training data, the technique can be 
extended to allow for nonlinear decision surfaces [38, 39].  
 

 
Fig. 3. (a) Separation of nonlinear data sets, (b) Generalisation of the 
solution by introducing slack variable for nonlinear data [35]. 
 
Thus, the optimisation problem is replaced by introducing ξ  
slack variable (Fig. 3(b)). 
 

2 r

i
i 1

|| w ||min C
2 =

⎡ ⎤
+ ξ⎢ ⎥

⎣ ⎦
∑             (6) 

 
subject to constraints,  
 

i i i iy (w.x b) 1 , 0, i 1,..., N+ ≥ − ξ ξ ≥ =       (7) 
 
where C is a regularisation constant or penalty parameter. 
This parameter allows striking a balance between the two 
competing criteria of margin maximisation and error 
minimisation, whereas the slack variables iξ  indicates the 
distance of the incorrectly classified points from the optimal 
hyper plane [40]. The larger the C value, the higher the 
penalty associated to misclassified samples [41].  
 
When it is not possible to define the hyper plane by linear 
equations, the data can be mapped into a higher dimensional 
space (H) through some nonlinear mapping functions (Ф). 
An input data point x is represented as Ф(x) in the high-
dimensional space. The expensive computation of 
(Ф(x).Ф(xi)) is reduced by using a kernel function [36]. 
Thus, the classification decision function becomes: 
 

r

i i i
i

f (x) sign y K(x,x ) b⎛ ⎞
= α +⎜ ⎟

⎝ ⎠
∑         (8) 

 
where for each of r training cases there is a vector (xi) that 
represents the spectral response of the case together with a 
definition of class membership (yi).αi (i = 1,….., r) are 
Lagrange multipliers and K(x, xi) is the kernel function. The 
magnitude of αi is determined by the parameter C [42]. The 
kernel function enables the data points to spread in such a 
way that a linear hyper plane can be fitted [43]. Kernel 
functions commonly used in SVMs can be generally 
aggregated into four groups; namely, linear, polynomial, 
radial basis function and sigmoid kernels. The performance 
of SVMs varies depending on the choice of the kernel 

382



 4

function and its parameters.  A free and open source 
software – openModeller [44] was used for predicting the 
probable landslide areas. openModeller 
(http://openmodeller.sourceforge.net/) is a flexible, user 
friendly, cross-platform environment where the entire 
process of conducting a fundamental niche modeling 
experiment can be carried out. It includes facilities for 
reading landslide occurrence and environmental data, 
selection of environmental layers on which the model 
should be based, creating a fundamental niche model and 
projecting the model into an environmental scenario using a 
number of algorithms as shown in Fig. 4. 

III. STUDY AREA AND DATA 
 
The Uttara Kannada district lies 74°9' to 75°10' east 
longitude and 13°55' to 15°31' north latitude, extending over 
an area of 10, 291 km2 in the mid-western part of Karnataka 
state (Fig. 5). It accounts for 5.37 % of the total area of the 
state with a population above 1.2 million [45]. This region 
has gentle undulating hills, rising steeply from a narrow 
coastal strip bordering the Arabian sea to a plateau at an 
altitude of 500 m with occasional hills rising above 600–860 
m. This district with 11 taluks, can be broadly categorised 
into three distinct regions –– coastal lands (Karwar, Ankola, 
Kumta, Honnavar and Bhatkal taluks), mostly forested 
Sahyadrian interior (Supa, Yellapur, Sirsi and Siddapur 
taluks) and the eastern margin where the table land begins 
(Haliyal, Yellapur and Mundgod taluks). Climatic 
conditions range from arid to humid due to physiographic 
conditions ranging from plains, mountains to coast. 
 
Survey of India (SOI) toposheets of 1:50000 and 1:250000 
scales were used to generate base layers – district and taluk 
boundaries, water bodies, drainage network, etc. Field data 
were collected with a handheld GPS. Environmental data 
such as precipitation of wettest month and precipitation in 
the wettest quarter were downloaded from WorldClim – 
Global Climate Data [http://www.worldclim.org/bioclim].  

(1) Precipitation (atmospheric water phenomena) is any 
product of the condensation of atmospheric water 
vapor that is pulled down by gravity and deposited on 
the Earth's surface such as rain.  

Other environmental layers used in the model were obtained 
from USGS Earth Resources Observation and Science 
(EROS) Center based Hydro1Kdatabase 
[http://eros.usgs.gov/#/Find_Data/Products_and_Data_Avail
able/gtopo30/hydro/asia] which are as follows: 

(2)  Aspect - describes the direction of maximum rate of 
change in the elevations or the slope direction. It is 
measured in positive integer degrees from 0 to 360, 
clockwise from north. Aspects of cells (pixels) of zero 
slope (flat areas) are assigned values of -1.  

(3)  DEM – is a digital representation of ground surface 
topography or terrain represented as a raster (a grid of 
squares) or as a triangular irregular network. DEMs 
are commonly built using remote sensing techniques 
or from land surveying. 

(4)  Flow accumulation (FA) - defines the number of 
pixels which flow into each downslope pixel. Since 
the pixel size of the HYDRO1k data set is 1 km, the 
flow accumulation value translates directly into 
upstream drainage areas in square kilometers. Values 
range from 0 at topographic highs to very large 
numbers (on the order of millions of square 
kilometers) at the mouths of large rivers. 

(5)  Flow direction (FD) - defines the direction of flow 
from each cell to its steepest down-slope neighbor 
derived from the hydrologically correct DEM. Values 
of flow direction vary from 1 to 255.  

(6)  Slope - describes the maximum change in the 
elevations between each pixel and its eight neighbors 
expressed in integer degrees of slope between 0 and 
90.  

(7) Compound Topographic Index (CTI) - commonly 
referred to as the Wetness Index, is a function of the 
upstream contributing area and the slope of the 
landscape. It is calculated using the flow accumulation 
(FA) layer along with the slope as: 

  
FACTI = ln

tan(slope)
⎛ ⎞
⎜ ⎟
⎝ ⎠

         (9) 

 
 

 
 

Fig. 4. Methodology used for landslide prediction in openModeller. 
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Fig. 5. Uttara Kannada district, Karnataka, India 

In areas of no slope, a CTI value is obtained by substituting 
a slope of 0.001. This value is smaller than the smallest 
slope obtainable from a 1000 m data set with a 1 m vertical 
resolution. 
 
8.) The global land cover change maps were obtained from 

Global Land Cover Facility, Land Cover Change 
[http://glcf.umiacs.umd.edu/services/landcoverchange/l
andcover.shtml; http://www.landcover.org/services/land 
coverchange/landcover.shtml].  

 
The spatial resolution of all the data were 1 km. Google 
Earth data (http://earth.google.com) served in pre and post 
classification process and validation of the results. 125 
landslide occurrence points of low, medium and high 
intensity were recorded using GPS from the field and 
published reports. 

IV. RESULTS AND DISCUSSION 
Two different precipitation layers were used to predict 

landslides – precipitation of wettest month and precipitation 
in the wettest quarter of the year along with the seven other 
layers as mentioned in section III. Figure 6 (a) and (b) are 
the landslide probability maps using GARP and SVM on 
precipitation of wettest month. The landslide occurrence 
points were overlaid on the probability maps to validate the 
prediction as shown in Fig. 7. The GARP map had an 
accuracy of 92% and SVM map was 96% accurate with 
respect to the ground and Kappa values 0.8733 and 0.9083 
respectively. The corresponding ROC curves are shown in 
Fig. 8 (a) and (b). Total area under curve (AUC) for Fig. 8 
(a) is 0.87 and for Fig. 8 (b) is 0.93. Figure 6 (c) and (d) are 
the landslide probability maps using GARP and SVM on 
precipitation of wettest quarter with accuracy of 91% and 
94% and Kappa values of 0.9014 and 0.9387 respectively.  

 
Fig. 6. Probability distribution of the landslide prone areas. 

 
ROC curves in figure 8 (c) and (d) show AUC as 0.90 and 
0.94. Various measures of accuracy were used as per [46] to 
assess the outputs. Table I presents the confusion matrix 
structure indicating true positives, false positives, false 
negatives and true negatives.     

 

 
 
Fig. 7. Validation of the probability distribution of the landslide prone 

areas by overlaying landslide occurrence points. 
 

Confusion matrices were generated for each of the 4 outputs 
(Table II) and different measures of accuracy such as 
prevalence, global diagnostic power, correct classification  
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Fig. 8. ROC curves for landslide prone maps (a) GARP (b) SVM on 
precipitation of wettest month; (c) GARP and (d) SVM on precipitation of 
wettest quarter.  

 
rate, sensitivity, specificity, omission and commission error 
were computed as listed in Table III.  
 
The results indicate that the output obtained from SVM 
using precipitation of the wettest month was best among the 
4 scenarios. It maybe noted that the outputs from GARP for 
both the wettest precipitation month and quarter are close to 
the SVM in term of accuracy. One reason is that, most of 
the areas have been predicted as probable landslide prone 
zones (indicated in red in Fig. 6 (a) and (c)) and the terrain 
is highly undulating with steep slopes that are frequently 
exposed to landslides induced by rainfall. Obviously, the 
maximum number of landslide points occurring in the 
undulating terrain, collected from the ground will fall in 
those areas indicating that they are more susceptible to 
landslides compared to north-eastern part of the district 
which has relatively flat terrain.  
 
Another case study of Kerala state, India was carried out 
with the same environmental layers along with 10 landslide 
occurrence points as shown in Fig. 9. The predicted output 
for precipitation in the wettest month is shown in Fig. 10 
and precipitation in the wettest quarter is shown in Fig. 11 
with an overall accuracy of 60%. The Kappa values for two 
cases were 0.966335 and 0.96532. The ROC curves are 
shown in Fig. 12 (a) and (b) with 0.97 AUC for both the 
cases respectively. The confusion matrix and statistics are 
presented in Table IV and V. The reason for low accuracy is 
the presence of only 10 occurrence points throughout the 
state. Also, the coarse resolution of the pixel may be 
attributed for poor accuracy. However, the Kappa value and 
the AUC are high which indicate that the probability 
distribution of the predicted points fall well within the 
occurrence points. It is another matter that the intensity of 
these landslide points may vary from low to medium to 
high. One potential limitation of the above data is their 
spatial resolution – 1 km. It is highly unlikely that landslides 
of this magnitude can occur in the study area. However,  

  
          TABLE I  

CONFUSION MATRIX STRUCTURE 
 

 TRUE 
PRESENCE 

TRUE 
ABSENCE 

PREDICTED PRESENCE  A B 
PREDICTED ABSENCE C D 

 
Key: A – True Positive, B – False Positive, C – False 

Negative, D – True Negative.  
 

given the environmental layers along with the occurrence 
points, the probable areas of occurrence can be mapped with 
great certainty. 
 

The movement of a slope is complex and it is induced or 
perturbed by many other factors besides rainfall such as 
groundwater data, soil moisture information, etc. which 
were not used in the prediction. It is known that there are 
accelerations of slope movements after intense rainfall, 
however, to what extent rainfall affects the slope movement 
remains unknown and the correlation between rainfall and 
the slope movement could be ambiguous in absence of 
detailed observations. Timely rainfall, soil moisture, grain-
size, lithology, geological structure, seismological 
observations and the longer time intervals for which data are 
available can improve the accuracy of the model. Beyond 
their key role in identifying and mapping the landslides, the 
choice of the variables (environmental layers) used for the 
prediction are also closely involved. Some limitations of the 
data set cannot be overcome. In this study for example, no 
hydrological field data were available. However, significant 
results were obtained in the study because the variables 
most influential on landslide were used. 

 
Natural disasters have drastically increased over the last 

decades. National, state and local government including 
NGOs are concerned with the loss of human life and 
damage to property caused by natural disasters. The trend of 
increasing incidences of landslides occurrence is expected 
to continue in the next decades due to urbanisation, 
continued anthropogenic activities, deforestation in the 
name of development and increased regional precipitation in 
landslide-prone areas due to changing climatic patterns [47]. 
The application of modern technologies required to control 
the effects of natural hazards including landslides must 
consider three significant factors - prediction, monitoring 
and conservation. In fact, the promotion of accessibility to 
urban facilities, such as homes and new roads in 
mountainous areas is difficult to achieve without 
considering geological and geotechnical factors to ensure 
that the development is pleasant and safe. Therefore, it is 
desired to have a notion about the main factors controlling 
the slope instability, assessing its severity, discriminating 
areas with presence/absence of landslides, updating and 
interpreting landslide data and determining areas that are 
prone to landslides. In this regard, the present work may be 
a contribution to the beginning of such disaster and 
mitigation studies.  
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Fig. 9. Landslide occurrence points in Kerala. 
 

TABLE II  
CONFUSION MATRIX FOR GARP AND SVM OUTPUTS FOR UTTARA KANNADA

 
 

UTTARA KANNADA 
TRUE 

PRESENCE 
TRUE 

ABSENCE 
NUMBER 

OF 
USABLE 

PRESENCE 

NUMBER 
OF 

USABLE 
ABSENCE 

GARP WITH 
PRECIPITATION 

OF WETTEST 
MONTH   

PREDICTED 
PRESENCE  

120 0  
125 

 
0 

PREDICTED 
ABSENCE 

5 0 

SVM WITH 
PRECIPITATION 

OF WETTEST 
MONTH   

PREDICTED 
PRESENCE 

118 0  
125 

 
0 

PREDICTED 
PRESENCE 

7 0 

GARP WITH 
PRECIPITATION 

OF WETTEST 
QUARTER 

PREDICTED 
PRESENCE 

118 0  
125 

 
0 

PREDICTED 
PRESENCE 

7 0 

SVM WITH 
PRECIPITATION 

OF WETTEST 
QUARTER 

PREDICTED 
PRESENCE 

117 0  
125 

 
0 

PREDICTED 
PRESENCE 

8 0 

 
TABLE III  

STATISTICS OF GARP AND SVM OUTPUTS FOR UTTARA KANNADA 
 

UTTARA 
KANNADA 

PREVALENCE 
 
 
 

(A+C)/N 

GLOBAL 
DIAGNOSTIC 

POWER 
 

(B+D)/N 
 

CORRECT 
CLASSIFICATION 

RATE 
 

(A+D)/N 

SENSITIVITY 
 
 
 

A/(A+C) 
 

SPECIFICITY 
 
 
 

D/(B+D) 

OMISSION 
ERROR 

 
 

C/(A+C) 

COMMISION 
ERROR 

 
 

B/(B+D) 

GARP WITH 
PRECIPITATION 

OF WETTEST 
MONTH   

 
- 

 
- 

 
0.96 

 
0.96 

 
- 

 
0.04 

 
- 

SVM WITH 
PRECIPITATION 

OF WETTEST 
MONTH   

 
- 

 
- 

 
0.94 

 
0.94 

 
- 

 
0.06 

 
- 

GARP WITH 
PRECIPITATION 

OF WETTEST 
QUARTER 

 
- 

 
- 

 
0.94 

 
0.94 

 
- 

 
0.06 

 
- 

SVM WITH 
PRECIPITATION 

OF WETTEST 
QUARTER 

 
- 

 
- 

 
0.94 

 
0.94 

 
- 

 
0.06 

 
- 

* Key: A – True Positive, B – False Positive, C – False Negative, D – True Negative, N – Number of Samples. 
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Fig. 10. Probability distribution of the landslide prone areas in Kerala 

using precipitation in the wettest month data. 
 
 
 

 
Fig. 11. Probability distribution of the landslide prone areas in Kerala 

using precipitation in the wettest quarter data. 
.

 
Fig. 12. ROC curves for the predicted landslide prone maps of Kerala.  

(a) using precipitation of the wettest month, (b) using precipitation of the wettest quarter.
  
 

 
 

TABLE IV  
CONFUSION MATRIX FOR GARP OUTPUTS FOR KERALA 

 
 

KERALA 
TRUE 

PRESENCE 
TRUE 

ABSENCE 
NUMBER 

OF 
USABLE 

PRESENCE 

NUMBER 
OF 

USABLE 
ABSENCE 

GARP WITH 
PRECIPITATION 

OF WETTEST 
MONTH   

PREDICTED 
PRESENCE  

6 0  
10 

 
0 

PREDICTED 
ABSENCE 

4 0 

GARP WITH 
PRECIPITATION 

OF WETTEST 
QUARTER 

PREDICTED 
PRESENCE 

6 0  
 

10 

 
 

0 PREDICTED 
PRESENCE 

4 0 

 
 
 
 

387



 9

 
TABLE V  

STATISTICS OF GARP OUTPUTS FOR KERALA
 

 
 

KERALA 

PREVALENCE 
 
 
 

(A+C)/N 

GLOBAL 
DIAGNOSTIC 

POWER 
 

(B+D)/N 
 

CORRECT 
CLASSIFICATION 

RATE 
 

(A+D)/N 

SENSITIVITY 
 
 
 

A/(A+C) 
 

SPECIFICITY 
 
 
 

D/(B+D) 

OMISSION 
ERROR 

 
 

C/(A+C) 

COMMISION 
ERROR 

 
 

B/(B+D) 

GARP WITH 
PRECIPITATION 

OF WETTEST 
MONTH   

 
- 

 
- 

 
0.6 

 
0.6 

 
- 

 
0.4 

 
- 

GARP WITH 
PRECIPITATION 

OF WETTEST 
QUARTER 

 
- 

 
- 

 
0.6 

 
0.6 

 
- 

 
0.4 

 
- 

* Key: A – True Positive, B – False Positive, C – False Negative, D – True Negative, N – Number of Samples.

V. CONCLUSION 
 
Landslides occur when masses of rock, earth or debris 
move down a slope.  Mudslides, debris flows or 
mudflows, are common type of fast-moving landslides 
that tend to flow in channels. These are caused by 
disturbances in the natural stability of a slope, which are 
triggered by high intensity rains. Mudslides usually begin 
on steep slopes and develop when water rapidly collects 
in the ground and results in a surge of water-soaked rock, 
earth and debris. Causes may be of two kinds: 1. 
Preparatory causes & 2: Triggering causes. Preparatory 
causes are factors which have made the slope potentially 
unstable. The triggering cause is the single event that 
finally initiated the landslide. Thus, causes combine to 
make a slope vulnerable to failure, and the trigger finally 
initiates the movement. Thus a landslide is a complex 
dynamic system. An individual ‘landslide’ 
characteristically involves many different processes 
operating together, often with differing intensity during 
successive years. 
 
The primary criteria that influence landslides are 
precipitation intensity, slope, soil type, elevation, 
vegetation, and land cover type. The present study 
demonstrated the effectiveness of two pattern recognition 
techniques: Genetic Algorithm for Rule-set Prediction 
and Support Vector Machine. The landslide hazard 
prediction study conducted in Uttara Kannada and Kerala 
have shown that small datasets can yield landslide 
susceptibility maps of significant predictive power. The 
efficiency of the model has been demonstrated by the 
successful validation. However, when the predicted 
features may have different immediate causes, one should 
carefully avoid including triggering factors among the 
predictor variables since they restrict the scope of the 
prediction map and convey often a poorly constrained 
time dimension. Beyond the sample size, the reliability of 
the susceptibility map fundamentally depends on a good 
knowledge of which environmental variables act to 
determine landslides, and on the availability and the  
 
 
 

 
 
 
quality of the data. To be reliable or simply useful, the 
prediction map must also be appropriately validated. The  
analysis showed that SVM applied on precipitation data 
of the wettest month with 96% accuracy was close to 
reality for Uttara Kannada district and GARP applied on 
precipitation data of the wettest quarter was more 
successful in identifying the landslide prone areas in 
Kerala. 
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