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In the face of increasing CO2 emissions from conventional energy (gasoline), and the anticipated scarcity of
crude oil, a worldwide effort is underway for cost-effective renewable alternative energy sources. Here, we
review a simple line of reasoning: (a) geologists claim that much crude oil comes from diatoms; (b) diatoms
do indeed make oil; (c) agriculturists claim that diatoms could make 10-200 times as much oil per hectare
as oil seeds; and (d) therefore, sustainable energy could be made from diatoms. In this communication, we
propose ways of harvesting oil from diatoms, using biochemical engineering and also a new solar panel
approach that utilizes genomically modifiable aspects of diatom biology, offering the prospect of “milking”
diatoms for sustainable energy by altering them to actively secrete oil products. Secretion by and milking of
diatoms may provide a way around the puzzle of how to make algae that both grow quickly and have a very
high oil content.

Introduction: Diatoms as an Energy Source

The recent soaring and crashing of oil prices and diminishing
world oil reserves, coupled with enhanced greenhouse gases
and the predicted threat of climate change, have generated
renewed interest in using algae as alternative and renewable
feedstock for energy production.1–3 In fact, diatoms, which are
single cell algae with silica shells,4 may have created much of
the purported global warming crisis by providing us with a
convenient fossil source of energy in the form of much of the
crude oil used to produce gasoline:5,6

“The main primary producers within the phytoplankton
todaysin terms of net productions[and] ... contributors
to sedimentary organic matter ... are the diatoms ...”.7

Therefore, living diatoms may also point the way to a
sustainable source of oil. Diatoms have become central to a
new direction in nanotechnology in which we grow and harvest
them for their hard silica parts, with the result that our
knowledge of diatoms is increasing rapidly.8–10 In our consid-
eration of the question of exploiting diatoms for their oil, we
will apply some of the concepts that are coming out of this
new field of “diatom nanotechnology”.4,8–17

The transparent diatom silica shell consists of a pair of
frustules and a varying number of girdle bands18,19 that both
protect and constrain the size of the oil droplets within, and
capture the light needed for their biosynthesis.20 We propose
three methods: (a) biochemical engineering, to extract oil from
diatoms and process it into gasoline; (b) a multiscale nano-
structured leaf-like panel, using live diatoms genetically engi-
neered to secrete oil (as accomplished by mammalian milk
ducts), which is then processed into gasoline; and (c) the use
of such a panel with diatoms that produce gasoline directly.
The latter could be thought of as a solar panel that converts
photons to gasoline rather than electricity or heat.

Over the past few decades, several thousand species of algae
including diatoms have been screened for high lipid content.1,21–23

It was found that, on average, polyunsaturated fatty acid, which
has a lower melting point than saturated fats,24 constitutes ∼25%
of algal mass. This content may vary noticeably between species,
and, interestingly, the lipid content increases considerably
(double or triples) when cells are subjected to unfavorable
culture conditions, such as photo-oxidative stress or nutrient
starvation.25 This is due to the shift in lipid metabolism from
membrane lipid synthesis to the storage of neutral lipids.25 One
lipid oil drop bearing a pennate diatom26 (see Figure 1) has
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Figure 1. Lipid bodies (denoted as “LB”) and lipid droplets (denoted as
“LD”) inside a chloroplast of the nuisance diatom Didymosphena geminata.
Arrowheads indicate triple thylekoids. (Reprinted with permission from ref
26.)
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outwitted us by its extraordinary ability to proliferate; however,
after we understand its secrets, we may be able to put it to work
for us:

“The diatom Didymosphenia geminata (Bacillariophy-
ceae) has garnered increased attention as a nuisance and
inVasiVe species in freshwater systems. Historically
described as rare yet cosmopolitan, a suspected new
Variant of D. geminata has the capacity to inundate
kilometres of riVer bottom during a bloom. Unlike most
other bloom-forming algae, D. geminata proliferates
under high water quality (i.e., low turbidity and low
nutrient) conditions”.27

Physiological and genetic manipulations of diatoms have the
potential to bring the concept of “diatoms for oil”23,25,28,29 closer
to commercial reality. Indeed, genetic transformation of diatoms
started with the goal of improving oil production25,30–32 (see
Figure 2), and it may be time to resume this line of research
with the large range of genomics tools being developed for
diatoms.33–44

Agricultural oil crops, such as soybean and oil palm, are being
used widely to produce biofuel; however, the amounts produced
are <5% of the plants’ biomass. They also require high cropping
area and extensive cultivation, with considerable concern about
environmental impact and competition with food production and
water use.22,45–48 Based on the photosynthetic efficiency and
the growth potential of algae, theoretical calculations suggest
that an annual oil production of >30 000 L (or ∼200 barrels)
of algal oil per hectare of land may be achievable in mass culture
of oleaginous algae, which is 100-200 times greater than
that of soybeans.21,23 Estimates vary:

“The per unit area yield of oil from algae is estimated to
be between 5000 and 20,000 gallons per acre [56 000 to
225 000 liters per hectare] per year, which is 7-31 times
greater than the next best crop, palm oil”.49

Diatoms, unlike other oil crops, grow extremely rapidly,50

and some can double their biomass within 5 h51 to 24 h.52 Even
“in the wild”, doubling times can be 2-10 days,53,54 which
includes photosynthesis and photorespiration periods. Diatoms
have been regarded as C3 photosynthesizers, and their photo-
synthetic efficiency is enhanced by concentrating CO2 around
Rubisco, diminishing photorespiration. It is estimated that
diatoms are responsible for up to 25% of global CO2 fixation.9

Benthic diatoms, under favorable conditions, migrate toward
sunlight and bloom in the presence of ample nutrients.55

Similarly, during unfavorable conditions they sink downward,

which constitutes the bulk of the organic flux. In addition,
continuous upwelling56 also replenishes nutrients, which end
up in the next round of diatom blooms. Each diatom cell creates
and then uses its own gas tank, so to speak, so perhaps diatoms
could eventually keep our gas tanks full, and, of course, reabsorb
CO2 in the process.

Diatoms may have a major role to play in the coming years,
with regard to the mass production of oil. This entails appropri-
ate cultivation and extraction of oil, using advanced technologies
that mimic the natural process while cutting down the time
period involved in oil formation. Here, we consider a simple
line of reasoning:

(1) Geologists claim that much crude oil comes from
diatoms.57,58

(2) Diatoms do indeed make oil.
(3) Agriculturists claim that diatoms make 10 times as much

oil per hectare as oil seeds,59 with theoretical estimates reaching
200 times.21,23

(4) Therefore, sustainable energy could be made from
diatoms.

(5) We may be able to get diatoms to secrete their oil, perhaps
even as gasoline, and therefore milk them, as we do cows.

We will review the evidence for these statements that is in
the public domain. While some companies are forming to
produce oil from unspecified “algae”,60,61 diatoms have received
scant mention,62,63 except by some hobbyists.64 What we leave
for a future study is a critical comparison of diatoms with other
energy alternatives, such as nondiatom algae (cf. refs 23 and
65), other biofuels, solar, wind, tidal, geothermal, hydrogen,
hydroelectric and nuclear power. It is possible that, unlike crop
biofuels, diatoms would not compete with food crops66 for
arable land.

Clearly, if diatoms could be used to make gasoline, then we
could continue using our gasoline-based motor vehicles without
a major change in technology or our way of life. The private
automobile becomes a sustainable proposition. We could
continue to use the combustion engine, which would then remain
a major competitor to other propulsion technologies. It sounds
like an easy resolution to the current situation, a way to “have
our cake and eat it too”. Thus, in this regard, diatoms are worthy
of serious consideration. Let us see what we find, beyond a
recent review:

“The characteristics of algal oil are similar to those of
fish and Vegetable oils, and can thus be considered as
potential substitutes for the product of fossil oil. In the
late 1940s, lipid fractions as high as 70-85% on a dry
weight basis [were] ... reported in microalgae ... . NeV-
ertheless, only a few authors haVe reported lipid Valo-
risation as biodiesel using diatoms with Hantzschia DI-
6067 and with Chaetoceros muelleri.68 A maximum yield
of 400 mg total lipid L-1 in nitrogen-replete cultures was
obtained. In the aim to produce biodiesel from microal-
gae, Cyclotella cryptica and NaVicula saprophila were
genetically manipulated25 to optimise lipid production”.69

The optimization of resource production via genetic manipu-
lation seems to be appropriate for making diatom biotechnology
viable and economically lucrative.

Does Crude Oil Come from Diatoms?

The recent genetic70 and sedimentary71 evidence suggests an
origin of diatoms in the early Jurassic period, 185 million years
ago.70 Medlin et al. have suggested that their origin may be
related to the end-Permian mass extinction, after which many
marine niches were opened.72

Figure 2. Partial history of attempts to use diatoms and other algae for
biofuels. (Reprinted, with permission, from ref 21. Copyright 1998, National
Renewable Energy Laboratory, Golden, CO.)

8770 Ind. Eng. Chem. Res., Vol. 48, No. 19, 2009
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The basic line of reasoning of geologists in attributing crude
oil to diatoms is that they comprise the bulk of the ocean
phytoplankton, so they must be a major source of the oil.73–75

This view must be tempered by a comparison of the geological
record of diatoms with the estimated ages of oil deposits.
Clearly, those that preceded diatoms could not have been
generated by them,1 and, indeed, a wide variety of prehistoric
organisms are suggested as sources of crude oil.7 The pattern
of fatty acids in recent sediments matches that of diatoms,76

and the 24-norcholestane biomarkers are indicators of diatom-
formed oil,77,78 as are many others.79–84

The notion that diatoms are major contributors to crude oil
deposits has been around since 1839,85–90 with evidence put
forth91 and then denied.92 The upshot is that this period left us
with uncertainty in the matter:

“The abundance of diatoms in parts of the Monterey
formation has suggested that these organisms may haVe
been the source of much of the oil of the formation.
Tolman89 has emphasized this View, and he had
the charge of a research project of the American
Petroleum Institute for the inVestigation of diatoms as a
source of oil, but a final report on this work has not
appeared”.93

However, recent work seems to have firmly reinstated this
hypothesis, based on the organic molecules (biomarkers) with

over 20 C atoms that are often unique to diatoms.76–84,94,95

Nevertheless, this may not account for the bulk of diatom oil,
because many of these molecules may be membrane com-
ponents,95,96 rather than the bulk fluid inside intracellular oil
droplets. Indeed, “storage components, such as neutral lipids,
and membrane-associated structural components, such as
glycolipids and phospholipids, varied independently”.97

Stratigraphic correlations of oil with diatoms are strong:98

“... diatomaceous sediments may themselVes be important
sources for petroleum,99”58 and there is now an “oVer-
whelming consensus in the literature that the OM
[organic matter] in the biosiliceous unit of the MF
[Monterey Formation of California] is of marine ori-
gin”.100

Despite all the evidence that diatoms are major contributors
to crude oil formation, doubts continue with language such as:
“A number of organic-rich sediments occur in the sedimentary
record which contain abundant organic matter presumed to be
of diatom origin”.101 The root cause of this has been attributed
to authoritarian pronouncements,89 which may continue through
our education system. On the other hand, a definitive story that
both makes a definitive analysis of the oil in diatoms and
evaluates the contribution of diatom oil, modified or not, to the
worldwide petroleum reserves, apparently has not been written
yet, although diatom biomarkers (24-norcholestanes) have been

Figure 3. Diagrammed fossilization model for organic matter of petroleum source rocks. The “organisms rich in labile organic matter” are primarily diatoms.
(Reprinted, with permission, from ref 399. Copyright 1997, Elsevier, Amsterdam, The Netherlands.)
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found in 109 crude oil basins.77 Two recent models for the role
of diatoms in producing sedimentary organic matter are shown
in Figures 3 and 4, the latter of which indicates live diatoms in
the sediment. What should be added to these flow diagrams is
the upwelling102–104 that leads to “the return of favorable
conditions” for germination of the spores,105 perhaps triggered
by changes in day length,103 at least of neritic diatoms. Also
missing are the obligate benthic diatoms106 and the possibility
that some sinking diatoms or spores stop at a pycnocline.107

Perhaps the best “smoking gun” is the presence of oil inside
fossil diatoms in sediments (see Figure 5):

“Based on experimental correlations between fluores-
cence microspectrometry and crude oils of known gross
chemical composition (i.e., saturates, aromatics and resin-
asphaltenes108), the ‘pure’ diatom oil contains an esti-
mated 60-70% saturates. The diatom oils are likely to
be rich in fatty acids, which during early diagenesis,
reportedly transform into condensed lipids.101,109,110

Nevertheless, the sedimentation of organic matter with diatom
valves may be species- and season-dependent.111 In any case,
to date, no one has directly compared the oil in droplets inside
fossil versus living diatoms, to determine how much diagenetic
change, if any, has occurred. This could be tested in the
laboratory, where diagenesis of the silica occurs within two
years.112

Some of the contradictions may be resolved by noting that,
although much of the organic material is reprocessed as it
sediments down through the water column,113,114 “... most of
the unsaturated [fatty] acids will be deposited directly into the
sediment when the diatoms die, and hence the acids will largely
escape the aerobic conditions at the surface. Preservation is then
aided by the anaerobic conditions below the surface”.76 Ap-
proximately 1% of the living diatoms in the ocean contribute
to the sediment below, where the frustules travel downward
live115 and land mostly intact.116 The freshest arrivals117,118

include the cell contents, protected by two valves, consisting
of live vegetative and spore cells (recall Figure 4). Perhaps even
dead diatoms protect their oil contents from bacteria. Despite
the darkness of the benthic zone, “... diatoms to a much greater
extent than other phytoplankton groups escape degradation by
heterotrophs [and] ... to a greater extent than other groups sink
out of the productive zone to the bottom ... particularly ... in
shallow boreal areas”.119 After a “bloom, a large proportion of
diatoms sink to the benthos” as spores120 (although spores of
some species sink more slowly than vegetative cells107). Here,121

diatoms survive ingestion by pelagic deposit feeders (or maybe
only diatom spores survive107), which, perhaps, is testament to
their mechanical strength,122 and “... some cells survive several
years123–125,126 especially at low temperatures.127 As the sedi-
ment piles up on the diatoms, the pressure and time gradually
transform the silica128 until the diatom structure is no longer
recognizable.116,129,130 However, the record survival time under
the accumulating sediment has not yet been established:

“In freshwater systems, Aulacoseira granulata resting
cells that had been in anoxic sediments for 20 years were
still able to germinate,131 and other species haVe been
found to surViVe in sediments from one to many
decades132,133 [cf. ref 134]. Marine species haVe been
germinated from depths of up to 50 m in sediments,135

but the amount of time these cells had been buried is
uncertain”.136

These long-term survivors rapidly form storage products upon
rejuvenation131 and survive through heterotrophy.137,138 Some
nonphotosynthetic diatoms are obligately heterotrophic.139

The selective loss of unsaturated lipids during simulated
diagenesis114,140 suggests that these lower-melting-point organics
would best be recovered from fresh or live diatoms. In any case,
the inefficiency of natural sedimentation in capturing diatom
oil is apparent,130 and if we attribute substantial crude oil
deposits to diatoms, it is clear that living diatoms have even
more to offer. The live diatom cells at the bottom of the sea
may survive on their stored oil and/or may be heterotrophic, if
they are not in suspended animation. Diatom spores contain oil

Figure 4. Schematic diagram of the role of planktonic diatoms in the
benthic-pelagic coupling during the spring blooms. Major pathways and
transport routes of diatom carbon to benthic deposit feeders are marked
with solid lines. Processes marked with numbers: (1) Primary production
by planktonic diatoms during the spring bloom is partly grazed in planktonic
food web and turned into dead particulate organic carbon (POC). (2) Part
of the diatoms die without being grazed. (3) Sedimentation of aggregates
of live diatoms and miscellaneous dead POC add material to the pool of
live diatoms and to a pool of dead labile detritus in the sediment. (4) Diatoms
gradually decay, thereby becoming a part of the pool of dead material. (5)
Benthic deposit feeder utilizes the pool of dead organic material. (6) Direct
utilization of live planktonic diatoms by deposit feeders is questioned.
(Reprinted, with permission, from ref 126. Copyright 2004, Elsevier,
Amsterdam, The Netherlands.)

Figure 5. Intense red-fluorescing chlorophyllinite [fossil chlorophyll]
preserved in association with green fluorescing diatom oils directly within
diatom frustule [width 10 µm]; imaged using a scan of 363 nm excitation,
with 510 ( 40 nm, 570 nm, and then >665 nm emission. (Reprinted, with
permission, from ref 110. Copyright 2001, Elsevier, Amsterdam, The
Netherlands.)

8772 Ind. Eng. Chem. Res., Vol. 48, No. 19, 2009
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droplets (“more or larger vesicles of storage product107,141”136),
which is consistent with the idea that their “primary role is
probably related to nutrient stress”.127 Up to 92% of cells form
spores.127 If, as suggested,127 the survival time of spores is
inversely related to temperature, because metabolism slows, then
we would propose that death occurs after the reserve of oil inside
spores is depleted via respiration,107 perhaps delayed by an
ability of diatoms to photosynthesize efficiently at low light
levels.106,142 Metabolism under the high pressure of a water
column may also be altered.143

Why Do Diatoms Make Oil Droplets?

It would have seemed obvious that the function of oil droplets
in diatoms would be first and foremost to counter the weight of
the dense silica shell (for Si/C mole ratios up to 0.81144) and
provide buoyancy:

“The specific graVity of diatoms may also be lessened by
the presence of an oil in the cells. Oil has been noted to
accumulate in diatoms late in the VegetatiVe period and,
in addition to proViding a food reserVe, may also result
in keeping them afloat while waiting return of conditions
faVorable for multiplication”.145

However, this simple hypothesis is not the prevailing one
for buoyancy, which suggests that ionic pumps instead somehow
maintain buoyancy.146,147 Apart from that, extracellular secre-
tions and the incorporation of the diatom cells in suspended
organic matter may govern their buoyancy. Earlier, there were
explanations invoking the importance of the carbohydrate pool
as reserve products in light dark cycles.148

Indeed, nitrate depletion, which causes diatoms to increase
oil production,149–152 changes one species, Thalassiosira weiss-
flogii, from neutrally buoyant to sinking,153 and another to enter
a faster sinking sexual phase,154 so the correlation between oil
and buoyancy is not so clear. Therefore, while auxospore
formation is correlated with oil production,110,155 some aux-
ospore sinks nevertheless.146,154 It may be that some diatoms
respond by crenation146 and others by oil droplet formation, or
both occur, during auxospore formation. The problem here is
that the oil content has never been quantified and compared to
the mass and density of the other components (silica shell,
cytoplasm, nucleus, vacuoles, and attached organic coat and
extracellular material) for any diatom.

The puzzle was stated succinctly 4 decades ago, and it still
seems to be unsolved:

“The nature of the problem is easily grasped. The specific
weight of a diatom test [silica shell] has been reported
to be 2.07, and that of protoplasm to range from 1.02 to
1.15.156 The specific weight of seawater usually ranges
from 1.020 to 1.028. It is eVident that diatoms are heaVier
than seawater and will ordinarily sink rapidly unless
adaptations to minimize the high frustule [shell] and
protoplasmic weight load occur... . Our knowledge of
diatom sinking rates is still inadequate to eValuate
critically the Various theories of adaptiVe flotation mech-
anisms possessed by diatoms”.157

The mean density of a diatom is the weighted sum of the
densities of its components, where the mathematical weights
are the volumes of the components. Whether it floats or sinks
is dependent only on the difference of this mean density from
that of the surrounding water (unless it is attached to material
of a different buoyancy). Large marine diatoms can be positively
or negatively buoyant.158–161 Although shape, including spines
and colony formation, can influence the rate of sinking, these

features have no influence whatsoever on the direction (sink or
float), unless they ensnare material of different mean density.

Again, one would suppose that the oil in diatoms might be a
food store. However:

“Catabolism rate of lipids does not seem to be Very
important: 1 to 2% h-1, respectiVely, for the light and
dark periods. On the other hand, significantly higher rates
of catabolism of polysaccharides are found for both the
light [20% h-1] and dark periods [8% h-1]. This ...
suggests that reserVe products of this diatom population
are mainly composed of polysaccharides”.162

Perhaps the correct conclusion is that oil droplets assist the
long-term survival of poor environmental conditions, whereas
polysaccharides are for daily fare. However, polysaccharides
are also secreted for microenvironment alteration,163,164 adhe-
sion,165 colony support,166,167 motility,168–170 and possibly

Figure 6. Light micrograph showing a Thalassiosira antarctica var.
antarctica resting spore. This section is roughly parallel to the plane of the
valve. Lipid inclusions are shown; two are marked with arrows. Scale bar
) 5 µm. (Reprinted, with permission, from ref 172. Copyright 1985,
Springer, Berlin, Germany.)

Figure 7. Transmission electron microscopy (TEM) micrograph of Thalas-
siosira antarctica var. antarctica with one vegetative valve (bottom, VH
) vegetative hypotheca) and one spore valve (SE ) spore epitheca). This
TEM micrograph of a section shows “extensive lipid reserves (LR) ...
accumulation of lipid reserves can occur before completion of spore
formation”. Scale bar ) 2 µm. (Reprinted, with permission, from ref 172.
Copyright 1985, Springer, Berlin, Germany.)

Ind. Eng. Chem. Res., Vol. 48, No. 19, 2009 8773
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antiviral activity.171 While spores generate their own substantial
quantities of oil (see Figures 6 and 7),172 so do some vegetative
cells (see Figures 8 and 9), with “the oil droplets comprising
most of the cell volume”.173

However, the “reason” an organism does something can be
quite different from our initial guesses:

“Laboratory studies showed that polar diatoms ... contain
high leVels of polyunsaturated fatty acids, which may help
to maintain membrane fluidity at low temperatures.
Preliminary data suggest that they react to changes in
temperature by changing their fatty acid profiles (Lange,
unpublished obserVations) ...”.174

Finally, we must keep in mind that oil production is far more
ancient than diatoms:

“All plastid-containing organisms examined so far carry
out de noVo biosynthesis of fatty acids within the plastid
Via the type II fatty acyl synthase.175 Diatoms can contain
large proportions of polyunsaturated fatty acids. Armbrust
et al.176 identified a complete pathway for polyunsaturated
fatty acid biosynthesis. After export from the plastid, lipid
or oil droplets often accumulate in the Vacuoles or
cytoplasm under nutrient-limited conditions”.174

What Do We Know about Diatom Oil?

Even if diatoms could produce enough oil177 to satiate our
drive for transportation, is it the right type of oil, or would it
require much chemical processing before we would want to burn
it? Microalgae generally are a potential source of energy,
because the energy-rich storage lipid product of these plants is
among the more useful natural products for conversion to
alternate energy such as gasoline and diesel fuel,178 besides
being extremely efficient biomass producers with high photo-
synthetic efficiencies of 12%-16% and possessing often
50%-60% of their biomass weight in the form of lipids.178–182

Lipid fractions as high as 70%-85% (on a dry weight basis) in
microalgae have been reported.177

Certain microalgae cultures could result in higher quantities
of storage lipids, such as triglycerides.183 Diatoms have been
regarded as useful neutral lipid sources of liquid-fuel precur-
sors.184 Besides high lipid and fatty acid content, there is an
abundance of eicosapentaenoic acid (polyunsaturated fatty acids
(PUFAs)) in diatoms.185 Nitzschia laeVis is a potential producer
of eicosapentaenoic acid, as shown by extracting the lipid and
analyzing it via thin layer chromatography (TLC) and gas
chromatography (GC).186 The lipids present are neutral lipids
(accounting for ∼75%), glycolipids, and phospholipids (see
Figure 10). Fatty acids that dominate the organisms include
tetradecanoic acid, hexadecanoic acid, and palmiloteleic acid.180

Diatoms of genera Haslea and Rhizosolenia biosynthesize
a series of C25 highly branched isoprenoid (HBI) alkenes or
haslenes, which evolved ∼90-146 million years ago in the
Cretaceous period.187–189 Isoprenoid-derived alkenes and
alkanes are important fuel sources that are found in a wide
variety of recent and ancient sediments and in some crude
oils.94,190 Many of the C25 (haslene) and C30 (rhizene) alkenes
are biosynthesized by a restricted number of diatom genera,
particularly some species of Haslea, Rhizosolenia, Pleuro-
sigma, and NaVicula.187,190–194 In H. ostrearia, highly
branched isoprenoid alkene (haslene) biosynthesis proceeds
even under axenic conditions, indicating de novo biosynthe-
sis.195 Interestingly, HBI biosynthesis seems to have evolved
at least twice in geological time in separate diatom genera.190

The C26 24-norcholestanes77 mark an increase in diatoms in
the Oligocene-Miocene.78 The spectrum of fatty acid and
related molecules reported in diatoms is given in Table 1.

How Much Oil Do Diatoms Produce?

Diatoms would seem to fare, in average dry weight that they
can synthesize as lipids, only a little better than green algae

Figure 8. Sketches of diatom oil droplets or fat globules (denoted as “f”)
in diatoms: (A-D) Pinnularia biceps f. minutissima and (E-H) NaVicula
cryptocephala. The oil droplets are small in fresh diatoms (B,F) but enlarge
on desiccation (C,G), perhaps resulting in a “peripheral fatty layer” (denoted
as “p”) surrounding the cytoplasm (denoted as “c”) and a vacuole.
(Reprinted, with permission, from ref 297. Copyright 1960, Kluwer
Academic Publishers, Dordrecht, The Netherlands.), accessed Octomber
2004.)

Figure 9. A pennate diatom, NaVicula sp., showing an oil droplet.
(Photograph reproduced with permission; courtesy of Charles J. O’Kelly,
http://www.bigelow.org/srs/okelly.html, accessed October 2004.)
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(24.5% vs 17.1%), although their average dry weight is
enhanced by a factor of 2 to 3 by nitrogen deprivation.65

However, the dry weight of silica in diatoms averages 60%.227

Therefore, the corrected dry weight percentage of organic
material in diatoms that is lipids is 24.5%/40% ) 61%. This
compares favorably to the record-holding nonsiliceous alga
Botryococcus braunii (70%).65 If we take the “stressed” lipid
content of 44.6%, we end up with the apparent contradiction
of >100% lipid organic matter,23 which means that we cannot
compute using cross-species averages. Nevertheless, this sug-
gests that if we discount the silica shells, some diatoms may be
far more productive for oil than other organisms.

Let us compare these calculations to actual observations:
“LiVing diatom plants will always be found to contain from
two to ten shining oil globules. The bulk of this oil, in
proportion to the size of the diatom, rarely falls below 5
percent; and the author has samples of diatom material in
which a careful measurement of the contained oil shows a
proportion of 50 percent”.228

“... some diatoms... are known to produce anomalous oils
and fats during periods of high nutrient aVailability (e.g.,
37% lipids229,230), apparently after bloom growth and
reproduction haVe ceased”.110

Oil droplets with diameters of 100-200 µm have been
observed in and near chloroplasts in some diatoms, which
suggests that they are synthesized within the chloroplasts.26,231–233

In the stationary phase, because of nitrogen depletion (but cf.
ref 234) “the oil droplets could be clearly seen filling nearly
the whole cell”, whereas the resumption of exponential growth
led to a reduction in fats.150 The source of nitrogen may matter,
because, for Ditylum brightwellii, growth in the nitrate almost
doubled lipid production, compared to ammonia, perhaps
because “The most striking aspect was the use of nearly all
ammonia before any nitrate was assimilated”.235 Perhaps nitrate
without ammonia present is a trigger for impending nitrogen
depletion? On the other hand, a “... dramatic synthesis of lipid
in the waters around Antarctica ... [with] no evidence for
nitrogen deficiency” has been observed.236 The factors involved
may be decreased temperature and irradiance, accompanied by
increased salinity,172,236,237 i.e., there may be multiple stimuli
to lipid synthesis. Combining all these ups and downs of oil
production versus nitrogen supply into a rational physiology is
a task for the future:

“A major research challenge is to conceptually integrate
photorespiratory metabolism in diatoms into the frame-
work of oVerall cellular energy balance, stress manage-
ment, and C and N status and turnoVer”.238

Industrial Processing of Diatom Oil

Lipid valorization as biodiesel using diatoms was reported
with Hantzschia DI-6067 and Chaetoceros muelleri.68 The

production of fuel (diesel, gasoline) through the transesteri-
fication and catalytic cracking of lipids accumulated in algal
cells has been reported,239 including diatoms.28 The main
raw material for diatom-based biodiesel is the enormous range
of triglycerides (monoglycerides, diglycerides, and triglyc-
erides), which are indeed compounds of fatty acids and
glycerol. In the transesterification process, an alcohol (such
as methanol) reacts with the triglyceride oils that are
contained in diatom fats, forming fatty acid alkyl esters
(biodiesel) and glycerin.69

Fuel oil formation can be achieved by base-catalyzed trans-
esterification, acid-catalyzed transesterification (with simulta-
neous esterification of free fatty acids), and noncatalytic
conversion via transesterification and esterification under su-
percritical alcohol conditions.240–243 The main process that can
be used for biodiesel production from organisms is base-
catalyzed transesterification.244 The reaction requires heat and
a strong base catalyst, such as sodium hydroxide or potassium
hydroxide. The simplified transesterification reaction is depicted
in Figure 11:

triglycerides + free fatty acids + alcohol f
alkyl esters + glycerin

This chemical process converts the triglycerides (TGs) found
in plants, microalgae, and animal fats to fatty acid methyl esters
(FAMEs) in a multistep synthesis, with glycerol being liberated
as a byproduct.240,245 More recently, it has been demonstrated
that supercritical alcohol246,247 can esterify free fatty acids and
transesterify triglycerides simultaneously with virtually no
sensitivity to water content. A major advantage is that simul-
taneous esterification and transesterification makes use of
diatoms, with elevated levels of free fatty acids,248,249 in less
time.

Liquefaction of algal diatom biomass can be accomplished
by natural, direct and indirect thermal, and fermentation
methods. Liquid hydrocarbon yields of close to 50% have
been obtained using a very-high-temperature, high-pressure,
catalyzed hydrogenation process. Reacting organic diatom
biomass with near-critical (320-390 °C, 200-420 bar) or
supercritical (400-500 °C, 400-550 bar) aqueous phases
can altogether transform the organic compounds over short
time periods (time frames from minutes to hours). The
reductive process is conducted under anaerobic or near-
anaerobic conditions. The lipids can be converted to a
hydrocarbon mixture that is similar to crude petroleum, along
with volatile alkane and alkene gases (C2-C5). This conver-
sion allows the generation of a burnable fuel of very high
calorific value.250 Kerogens are converted to an oily substance
under conditions of high pressure and temperature.251–253

Besides n-alkanes, aromatics, napthenes, and alkyl benzenes5

were found in the hydrocarbons produced from kerogen. The

Figure 10. Classification of diatom lipids.
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production of diesel fuel and gasoline through the transes-
terification and catalytic cracking of lipids accumulated in
algal cells has been reported,239 as has the production of
energy from diatom biomass through fermentation and also
via thermochemical liquefaction.254

Lipids in diatoms are converted to hydrocarbons:

C50H92O6
lipids

f CXHY
hydrocarbon

+ nCO2
carbon dioxide

From this, it is evident that the direct extraction of diatom lipids
is a more-efficient method for obtaining energy than fermenta-

tion. This can occur by having solvents such as CH2Cl2

(dichloromethane), through the direct expression of the liquid
lipids, or a combination of both methods (see Figure 12). The
thermochemical liquefaction process often results in a heavy
oily or tarry material that is then separated into different fractions
by catalytic cracking. As with hydrocarbons derived from other
forms of renewable biomass, microalgal diatom lipids can be
converted to suitable gasoline and diesel fuels through trans-
esterification.

Environmental and Genetic Manipulation of Diatoms

Could we manipulate diatoms, by optimizing their environ-
ment255 or genetics, to produce the type of oil that we want?
Here are a few of the factors that have already been manipulated:

• The aging of a sample of diatoms is reported to increase
hydrocarbon content.256

• The degree of unsaturation of C25 haslenes varies with
temperature.223

• Growth rate or salinity can affect C25 and C30 production,225

and there is an optimum salinity for C20.
257

• Diatoms kept in the dark produce more oil droplets.258

However, in the wild, there is “a small loss from lipid, during
the night162”.259

• Nitrogen depletion increases “fat” production,149,150,255

sometimes within a day.151,152

• Drying or desiccation increases oil production,260,261 and
slower drying allows cells to survive better.261

• Mutants of fatty acid synthesis have been attained.262

• Diatom species optimal for “ω-3 polyunsaturated fatty acids
(PUFAs) such as eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA)”263 have been selected.

• Organic mercury and cadmium inhibit fatty acid and sterol
production in diatoms.264

There is much variability between diatom species, such as,
for instance, in their response to desiccation,261 so the choice
of optimal species for oil production is necessary.

An obligate photoautotrophic diatom has already been geneti-
cally transformed to a heterotroph.37 Most, but not all, diatoms
are photosynthesizers.139 Regardless of whether one has obliga-
tory139 or facultative heterotrophs,137,138 the heterotrophic
diatoms could then use other energy sources to make oil. An
alternative point of view is that we may wish to use an obligate
photoautotrophic diatom,37 because it could possibly be engi-
neered to avoid using its stored oil.

Table 1. Fatty Acids and Related Organic Molecules Reported in
Diatomsa

a Blank lines mean no instances were found in our literature survey.

Figure 11. Process of extraction of biodiesel from diatom lipids.
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“‘You can make algae with a very high oil content and you
can make algae that grows very quickly and, at the moment,
no one can do both,’ said Robert Trezona, R&D director at the
Carbon Trust”.265 However, the answer to this may merely be
switching the diatoms from exponental growth to “stress” that
induces oil formation, both of which they can do rapidly.
Nevertheless, there is a caveat:

“Prior to this program [Figure 2], little work had been
done to improVe oil production in algal organisms. Much
of the program’s research focused attention on the elusiVe
‘lipid trigger.’ (Lipids are another generic name for TAGs
[triacylglycerols], the primary storage form of natural
oils.) This ‘trigger’ refers to the obserVation that, under
enVironmental stress, many microalgae appeared to flip
a switch to turn on production of TAGs. Nutrient
deficiency was the major factor studied. Our work with
nitrogen-deficiency in algae and silicon deficiency in
diatoms did not turn up any oVerwhelming eVidence in
support of this trigger theory. The common thread among
the studies showing increased oil production under stress
seems to be the obserVed cessation of cell diVision. While
the rate of production of all cell components is lower
under nutrient starVation, oil production seems to remain
higher, leading to an accumulation of oil in the cells.
The increased oil content of the algae does not lead to
increased oVerall productiVity of oil. In fact, oVerall rates
of oil production are lower during periods of nutrient
deficiency. Higher leVels of oil in the cells are more than
offset by lower rates of cell growth”.21

Thus, discussions so far highlight that diatoms are a potential
source of oil and have the ability to grow rapidly. However,
there is a need for technically sound methodologies that can
serve as the infrastructure for implementing diatoms as a
comprehensive source of energy in the form of oil. In the next
section, a new solar panel approach that utilizes genomically
modifiable aspects of diatom biology, offering the prospect of
“milking” diatoms for sustainable energy, is discussed.

A Diatom Solar Panel

We do not harvest milk from cows by grinding them up and
extracting the milk. Instead, we let them secrete the milk at
their own pace, and selectively breed cattle and alter their
environment to maximize the rate of milk secretion.266–269 We
do not simultaneously attempt to maximize their rate of
reproduction. Perhaps we could do the same with diatoms. The
milking of algae has been done by solvent extraction methods
that do not kill the cells,270,271 but in which they are otherwise
passive. Here, we propose altering cells so that they actively
secrete their oil droplets.

Some diatoms are tough extremophiles that reside in assorted
harsh environments15 and diatoms have been raised in various

microcosms;272–277 therefore, it is plausible to consider confining
a diatom colony to a solar panel. Unlike ordinary solar panels
that produce electricity, a diatom solar panel would produce
oil for us; therefore, in designing it, we would have to solve
various optical and mass transport problems. We pose this here
as an engineering and genomics challenge, rather than presuming
to give a complete solution. Let us consider some of the
questions and opportunities involved:

• Mammalian milk contains oil droplets that are exocytosed
from the cells lining the milk ducts.278–281 It may be possible
to genetically engineer diatoms so that they exocytose their oil
droplets. This could lead to continuous harvesting with clean
separation of the oil from the diatoms, provided by the diatoms
themselves. The reverse process of the uptake of hydrocarbons
from the environment has already been demonstrated,282

although we do not know if it occurs via endocytosis. Exocytosis
of �-carotene globules has been hypothesized as the mechanism
of extraction into the biocompatible hydrophobic liquid dode-
cane283 from the unicellular green alga Dunaliella, perhaps
accelerated from the natural exocytosis mechanism of this
species284 by the presence of the dodecane.283 Higher plants
have oil secretion glands,285–288 and diatoms already exocytose
the silica contents of the silicalemma,9,289 adhesion and motility
proteins, and polysaccharides,166,168,290,291 so the concept of
secretion of oil by diatoms is not far-fetched.

• The concept of milking diatoms adds a third dimension to
the inverse relationship between biomass and oil production.
Therefore, the optimization of oil production292 must be
reconsidered. For example, a system that is closed except for
oil secretion and gas exchange may be able to conserve
micronutrients,293 especially if little or no net growth of cells
is occurring. This might solve the productivity gap by getting
10-200 times more oil, compared to oilseed crops.23,59

• With at least a boundary layer294 of water on the diatoms,
secreted oil droplets would separate under gravity, rising to the
top of a tilted panel, forming an unstable emulsion, which should
progressively separate. The oil could then be removed, very
similar to the cream that rises to the top of mammalian milk
that has not been homogenized. The maximum size of the
droplets might be limited by the diameters of the pores of the
diatom valves (shells) or the width of the raphes.166 It may prove
wise to keep diatom oil in its natural droplet form, rather than
produce a bulk liquid, because small droplets increase energy
efficiency.295,296

• Diatoms require water, or at least high humidity.297 Thus,
we either need a water-impermeable chamber or a source of
additional water for the panel. Diatoms can survive desiccation,
and, indeed, drying or desiccation increases oil production.260,261

Because slower drying allows cells to survive better,261 one
could surmise that this gives time for more oil production: “fat-

Figure 12. Thermal liquefaction accompanied by the separation of fuel oil by solvent extraction.
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containing cells are more likely to survive drying than fat-free
cells”.297 Thus, wet/dry cycling might be a key to oil production.

• If we decide to keep the water in while allowing the entrance
of CO2, then we either must use real stomata or design a
replacement for them. After all, a solar panel with live diatoms
inside (cf. refs 298 and 299) is not too different in structure
and function from a plant leaf (see Figure 13), from which we
could learn much.

• Of course, many leaves have air spaces within them;
therefore, contrary to the usual practice of growing diatoms
immersed in water,300 we might find it better to grow them on
surfaces in air with high humidity. This also might enhance
gas exchange.

• We could go one step further and use actual leaves to
support diatoms inside in their internal air spaces, similar to
the relationship between a blue green alga (cyanobacterium)
Anabaena and the plant Azolla.301 The leaf would then provide
and control water and gas exchange, temperature control, and
directional control of light by solar tracking. Perhaps diatoms
could substitute for the palisade mesophyll and/or spongy
mesophyll (see Figure 13). Diatoms have entered naturally into
many associations and symbioses,18,302–316 so the creation of
such a new angiosperm leaf-diatom endophytic symbiosis may
prove to be possible.

• Of course, solar panels are subject to solar heating. This
could be alleviated as a problem by starting with thermophilic
diatoms, some of which have been reported to exist at
temperatures up to 76 °C.317–324 Temperature ranges for growth
and photosynthesis of diatoms have only occasionally been
investigated,325 let alone for oil production.

• Can we take advantage of the optical properties of diatoms
and diatom colonies18 to increase the photosynthetic yield of
oil? The delivery of light to algal cultures has been addressed
in a variety of ways, including fiber optics326–328 and immersion
optics;329 however, in all cases, the algae have been passively
involved. Diatoms may make use of natural light pipes, such
as sponges do with spicules,330 and colonial diatoms that are
attached to each other in chains via silica or polysaccharide
linkages18 may share the light by having the entire colony acting
as a light pipe.9 In this case, we would be utilizing the multiscale
optics of the diatoms themselves,331 including their ability to
focus20 and redistribute332 light, which may partially explain
why diatoms photosynthesize efficiently at low light levels.142

Diatoms can probably be oriented on grooved surfaces,333 so
that the deliberate optimization of light delivery may be
achievable. The engineering of three-dimensional tissue
scaffolds334–338 may help contribute to optimizing the growth

of adherent diatoms. Microfluidic scaffolds339 could be designed
to deliver time-cycled nutrients and perhaps remove oil.

• Some motile colonial diatoms build their own tubular
scaffolds, within which they orient themselves,340,341 perhaps
forming dynamically adaptive light pipes. We could take
advantage of the phototaxic motility342–344 of raphid diatoms,
to allow them to build their own optimal, perhaps constructal
branched architectures.15,345,346 Such self-assembled multiscale
structures might simultaneously produce the optical properties
needed, as well as the nutrient flow and oil removal microfluidics.

• If our diatom panel is to have diatoms attached to a surface,
then a monoraphid diatom347,348 might be best. This would be
asymmetric (an example of heterovalvy18) and we might be able
to arrange oil secretion from the araphid side, because of
possible polarity to the cytoskeleton.349

• It is generally assumed that more light means more
productivity for photosynthesizing organisms; however, because
diatoms flourish at low light levels,293,350–352 optimizing either
their growth or oil production may require taking this into
account. This ability, in nature, may be due to their facultative
heterotrophy352 or light level adaptation.353 Low light may
imitate conditions of nitrogen deprivation354 and therefore
improve the amount of oil per cell. On the other hand, we might
want to select for diatoms that lack heterotrophic ability, if that
ability uses part of the oil that they produce.

• At the other extreme, excess and fluctuating light leads to
stress and photoprotection reactions in diatoms;355,356 however,
the relation of the “rapid (seconds to tens of minutes) regulation
of a switch from a light harvesting to a photoprotecting state”,174

to the postulated “switch” to oil production21 seems unexplored.
A full inquiry into the existence (and, if so, mechanism) of the
“oil trigger”21 is long overdue.

Direct Production of Gasoline by Diatoms

Low-molecular-weight C2-C6 hydrocarbons in diatoms un-
fortunately are treated only in a single report:197

“Laboratory experiments haVe been carried out197 in
order to assess and quantify the role of marine phy-
toplankton in the production of nonmethane hydrocar-
bons. They proVided eVidence that supports the hypothesis
that some short-chain hydrocarbons are produced during
diatom and dinoflagellate lifecycles. Their results suggest
that ethane, ethene, propane and propene are produced
during the autolysis of some phytoplankton, possibly by
the oxidation of polyunsaturated lipids released into their
culture medium. In contrast, isoprene and hexane appear
during phytoplankton growth and are thus most likely

Figure 13. Anatomy of an angiosperm leaf. Diatoms could possibly occupy the air space and/or replace palisade or spongy mesophyll cells. Such an
arrangement might provide gas exchange, temperature, and humidity control. (Image reproduced with permission, under the Creative Commons Attribution
ShareAlike 2.5 License, from ref 400. Copyright 2006, H. McKenna.)
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produced either directly by the plankton or through the
oxidation of exuded dissolVed organic carbon. Studies357

suggested that ethylene produced in estuarine water is
produced biotically by phytoplankton and abiotically by
the photolysis of polyunsaturated lipids in particulate and
dissolVed organic matter. They predicted that high
concentrations of ethylene are produced in areas with
high primary productiVity.”358

This is supported by observations of C2-C4 alkanes in ocean
surface waters,359 along with isoprene (C5), also attributed to
algae360 (mostly diatoms), and direct laboratory observation of
isoprene production by diatoms.199

In the range of C7-C12, ∼1/3 of the tested diatom strains
produced R,�,γ,δ-unsaturated aldehydes.201 With some opti-
mism about the power of systems biology and how malleable
microalgae might be,361 perhaps we could engineer diatoms that
would make these compounds, or the lower-molecular-weight
alkanes and alkenes, in great quantities. The biochemical
pathways of these polyunsaturated aldehydes are being worked
out,203,204 and their production correlates with the onset of
culture “decline”,362 giving us another possible insight (cf. ref
363) into the long sought “switch” to oil production.21 Thus,
again, “stress” plays a role,363,364 especially mechanical dam-
age,365 which is imitated in the laboratory by sonication:204

“...LOX [lipoxygenase] actiVation in marine diatoms
triggers a multiphase mechanism that is responsible for
the synthesis of at least two classes of proapoptotic and
teratogenic products, FAHs [fatty acid hydroperoxides]
and hROS [highly reactiVe oxygen species], which can
mimic the toxic effects of the microalgae on grazer
copepods”.202

“Although the effects of such toxins are less dramatic
than those inducing direct poisoning and death of
predators, they are nonetheless insidious, as they affect
the future generation of grazers, inducing abortions, birth
defects and reduced larVal surViVorship [though there is
more to this story366]”367 ...
“... using chemical warfare [cf. ref 368] ... these ... cells
produce a plethora of oxylipins [oxygenase-mediated
oxygenated deriVatiVes of fatty acids], including short-
chain unsaturated aldehydes, hydroxyl-, keto-, and ep-
oxyhydroxy fatty acid deriVatiVes ... . The biochemical
process inVolVed in the production of these compounds
shows a simple regulation based on decompartmentation
and mixing of preexisting enzymes and requires hydrolysis
of chloroplast-deriVed glycolipids to feed the downstream
actiVities of C16 and C20 lipoxygenases”.369

Given that pathways exist for the production of many alkanes,
starting with 12-alkane (see Table 1), the production of shorter
alkanes within genetically manipulated diatoms might be
plausible. If not, we could fall back on known organic chemistry
reactions370,371 to convert the natural products to alkanes. Of
course, we may have to select diatoms that can survive the very
products that we are asking them to produce for us, but given
the fact that extraction with biocompatible organic solvents
works for some algae270,271,283,372 and diatoms can degrade
petroleum hydrocarbons,373 this should be possible.

Conclusion

Despite ∼170 years of research on the relationship between
diatoms and crude oil, we still know very little about the oil inside
diatoms itself. Therefore, we have collected some images from the
literature, so we all know what we are looking for (recall Figures
1, 5, 6, 7, 8, and 9). To conduct a proper chemical analysis of the

oil inside diatom oil droplets, a method for separating out oil
droplets inside diatoms from the shell and cytoplasm must be
developed. Sonication, centrifugation, freezing and crushing,
extraction, induced exocytosis, etc. must be attempted.

With more than 200 000 species from which to choose, and
all the combinatorics of nutrient and genome manipulation,
finding or creating the “best” diatom for sustainable gasoline
will be quite a task. Nevertheless, some guidelines for starting
species can be guessed from our survey:

• Choose planktonic diatoms with positive buoyancy158,374,375

or at least neutral buoyancy.153,235,376,377

• Choose diatoms that harbor symbiotic nitrogen-fixing cya-
nobacteria,306,378–380 which should reduce nutrient requirements.

• Choose diatoms that have high efficiency of photon use,
perhaps from those that function at low light levels.106,142

• Choose diatoms that are thermophilic,317–324 especially for
solar panels subject to solar heating.

• Consider those genera that have been demonstrated by
paleogenetics to have contributed to fossil organics.381

• For motile or sessile pennate diatoms that adhere to surfaces,
buoyancy may be much less important than survival from desic-
cation, which seems to induce oil production.260,261 Therefore, the
reaction of these diatoms to drying is a place to start. The reaction
of oceanic planktonic species to drying has not been investigated,
although one would anticipate that they have no special mecha-
nisms for addressing this (for them) unusual situation.

• Genetic engineering of diatoms to enhance oil production
has been attempted, but it has not yet been successful.25,30,31,382–384

• We could use a compustat for mutation and selection of
diatoms that maximize oil droplet size and/or number.9,385

• Generally, cell proliferation seems to be counterproductive
to oil production on a per-cell basis, which is a problem that
has been expressed as an unsolved Catch-22.62 However, this
balance may shift in our favor when we start milking diatoms
for oil instead of grinding them.

The need of the hour is to develop technologies for efficient,
safer, less-polluting alternative oil sources, because the present stock
of fossil oil is fast dwindling and its burning has accentuated
human-caused global warming, which started 8000 years ago.386

The mechanisms of crude oil formation by natural phenomena are
now partially understood, and technology for crude oil synthesis
is in the budding stage; however, because the majority of petroleum
has its origins in algae, diatoms may play a vital role in sustainable
oil production. The manipulation of microalgal or diatom lipid
quantity and quality could be very significant and help us in
effectively using this renewable resource as energy.

Energy is the prime mover for economic development. The
global annual consumption of energy is now over 400 EJ387

and the major share (79%) comes from fossil fuels.388 Fossil
fuels are nonrenewable resources that are used in the production
of energy, and recent history shows that they have been
consumed at increasing rates.389 Fossil fuels include coal, natural
gas, and oil, and the term might be extended to methyl
hydrate.390 During the 20th century, oil replaced coal as the
dominant fossil fuel. Despite oil reserves that have been
estimated to last until the year 2050,391 the switch to an
alternative energy source may occur as rapidly as the switch
from the horse to the automobile392 and, thus, may not take
another generation. Therefore, it would seem wise to proceed
with a rapid increase in biofuel use, from 0.3%388 to the
majority, well before the oil supply is depleted, picking up from
the major aborted program of the 1980-1990s21 (see Figure
2). On the other hand, estimates of fossil fuel reserves are
“ambiguous” and “... the world consumption of oil, coal and
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gas has increased over the last half century. This trend is forecast
to continue to 2030”,393 so that if we put up with the predicted
global warming, the pressure for biofuel use may prove more
geopolitical than anything else. Certainly, the sale of crude oil
has empowered some nations far beyond the role they would
otherwise have in the world. We conclude that biofuel invest-
ment is a gamble in the short term, except for countries that
are willing to eschew imported oil,394 despite the latter’s possibly
continued lower cost for a while. On the other hand, countries
that master sustainable large-scale biofuel production now will
be in a long-term position to sell the technology to others and
ignore geopolitical pressures from fossil-oil-producing countries.
“In [global oil] peaking there is certainly cause for significant
concern, but not in our view for panic”.395 We have an
opportunity to plan ahead, or not. If each approach to sustainable
energy sources, such as diatoms, must compete in price with
fossil fuels before its proper investment occurs, we shall have
to wait for the last drop of easily accessible oil to be extracted
out of the ground, which is an approach to problem solving
that has, for example, significantly reduced biodiversity.396 If
we subsidize the development of sustainable energy sources for
reasons other than price,397 there will be a gnashing of teeth
and undermining of the effort by the oil-producing countries
and those countries that maintain a dependence on them;398

however, in the long run, we will have done the right thing.
Just announced work401 suggests that diatoms can triple the
efficiency of electrical solar panels, an efficiency that should
also apply to gasoline secreting solar panels.
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Rowland, S. Highly branched C25 isoprenoids in axenic cultures of Haslea
ostrearia. Phytochemistry 1999, 51 (1), 69–73.

(196) Colomb, A.; Yassaa, N.; Williams, J.; Peeken, I.; Lochte, K.
Screening volatile organic compounds (VOCs) emissions from five marine
phytoplankton species by head space gas chromatography/mass spectrometry
(HS-GC/MS). J. EnViron. Monitor. 2008, 10 (3), 325–330.

(197) McKay, W. A.; Turner, M. F.; Jones, B. M. R.; Halliwell, C. M.
Emissions of hydrocarbons from marine phytoplanktonsSome results from
controlled laboratory experiments. Atmos. EnViron. 1996, 30 (14), 2583–
2593.

(198) Ratte, M.; Bujok, O.; Spitzy, A.; Rudolph, J. Photochemical alkene
formation in seawater from dissolved organic carbon: Results from
laboratory experiments. J. Geophys. Res., [Atmos.] 1998, 103 (D5), 5707–
5717.

(199) Moore, R. M.; Oram, D. E.; Penkett, S. A. Production of isoprene
by marine phytoplankton cultures. Geophys. Res. Lett. 1994, 21 (23), 2507–
2510.

(200) Milne, P. J.; Riemer, D. D.; Zika, R. G.; Brand, L. E. Measurement
of vertical distribution of isoprene in surface seawater, its chemical fate,
and its emission from several phytoplankton monocultures. Mar. Chem.
1995, 48 (3-4), 237–244.

(201) Pohnert, G. Diatom/copepod interactions in plankton: The indirect
chemical defense of unicellular algae. ChemBioChem 2005, 6 (6), 946–
959.

(202) Fontana, A.; d’Ippolito, G.; Cutignano, A.; Romano, G.; Lamari,
N.; Gallucci, A. M.; Cimino, G.; Miralto, A.; Ianora, A. LOX-induced lipid
peroxidation mechanism responsible for the detrimental effect of marine
diatoms on Zooplankton grazers. ChemBioChem 2007, 8 (15), 1810–1818.

(203) Wichard, T.; Gerecht, A.; Boersma, M.; Poulet, S. A.; Wiltshire,
K.; Pohnert, G. Lipid and fatty acid composition of diatoms revisited: Rapid
wound-activated change of food quality parameters influences herbivorous
copepod reproductive success. ChemBioChem 2007, 8 (10), 1146–1153.

(204) Barofsky, A.; Pohnert, G. Biosynthesis of polyunsaturated short
chain aldehydes in the diatom Thalassiosira rotula. Org. Lett. 2007, 9 (6),
1017–1020.

(205) Garg, A.; Bhosle, N. B. Abundance of macroalgal organic matter
in biofilms: Evidence from n-alkane biomarkers. Biofouling 2004, 20 (3),
155–165.

(206) Tornabene, T. G.; Kates, M.; Volcani, B. E. Sterols, aliphatic
hydrocarbons, and fatty acids of a nonphotosynthetic diatom Nitzschia alba.
Lipids 1974, 9 (4), 279–284.

(207) Volkman, J. K.; Eglinton, G.; Corner, E. D. S. Sterols and fatty
acids of the marine diatom Biddulphia sinensis. Phytochemistry 1980, 19
(8), 1809–1813.

(208) Nichols, D. S.; Nichols, P. D.; Sullivan, C. W. Fatty-acid, sterol
and hydrocarbon composition of Antarctic sea-ice diatom communities
during the spring bloom in McMurdo Sound. Antarctic Sci. 1993, 5 (3),
271–278.

(209) Viso, A. C.; Marty, J. C. Fatty acids from 28 marine microalgae.
Phytochemistry 1993, 34 (6), 1521–1533.

(210) Suzuki, T.; Matsuyama, Y. Determination of free fatty acids in
marine phytoplankton causing red tides by fluorometric high-performance
liquid chromatography. J. Am. Oil Chem. Soc. 1995, 72 (10), 1211–1214.

(211) Whyte, J. N. C.; Ginther, N. G.; Townsend, L. D. Formation of
domoic acid and fatty acids in Pseudonitzschia pungens f multiseries with
scale of culture. J. Appl. Phycol. 1995, 7 (2), 199–205.

(212) Reuss, N.; Poulsen, L. K. Evaluation of fatty acids as biomarkers
for a natural plankton community. A field study of a spring bloom and a
post-bloom period off West Greenland. Mar. Biol. 2002, 141 (3), 423–
434.

(213) Pel, R.; Floris, V.; Gons, H. J.; Hoogveld, H. L. Linking flow
cytometric cell sorting and compound-specific 13C-analysis to determine
population-specific isotopic signatures and growth rates in cyanobacteria-
dominated lake plankton. J. Phycol. 2004, 40 (5), 857–866.
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