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Abstract The Western Ghats forms an important water-

shed for the entire peninsular India, being the source of 37

west flowing rivers and three major east flowing rivers and

their numerous tributaries. However, deforestation due to

large scale land cover changes has affected the water sus-

tenance in the region evident from the quantity and dura-

tion of water availability during post monsoon period. Land

use Land cover changes accelerated by unplanned anthro-

pogenic activities have been the prime mover of global

warming and consequent changes in the climate. This

necessitates appropriate resource management with an

understanding of drivers. Geo-visualization of landscape

transitions considering the influential agents will aid in

formulating strategies to mitigate global warming. Uttara

Kannada district in the Central Western Ghats has the

distinction of having highest forest cover in the country and

this region is now experiencing rapid forest cover changes.

Factors inducing changes in the land cover are normalized

through fuzzyfication, considered for Multi criteria Eval-

uation using Analytical Hierarchy Process (AHP) under

high protection and low protection scenarios. Likely land

use transitions by 2022 across zones based on transitions

during 2004–2007, 2007–2010, 2010–2013 was done

through cellular automata and Markov chain process (MC).

The analyses highlight the loss of forest cover by

66.55–56.76% by 2022 in the coastal zone with escalating

population density. Similar situation of 65.98–55.62%

decline in Sahyadri region is noticed with execution of

dams, hydroelectric projects and monoculture plantations.

Lower transitions as compared with the second scenario

highlights regulatory framework’s role in protection.

However, forests in plain region show loss of

27.38–11.09% in both scenarios due to population pressure

and market induced land cover changes. This necessitates

policy interventions by the federal government to mitigate

forest loss towards sustainable development.

Keywords Fuzzy-AHP-CA � Geo-visualization � LULC �
Central Western Ghats � CA-Markov

1 Introduction

The global forest loss of 2.3 million sq.km (2000–2012)

was reported to cater the growing demands of burgeoning

population coupled with the unplanned developmental

activities, while the afforestation due to global forest pro-

tection initiatives is only 0.8 million sq.km [1]. Forests

transitions leading to deforestation in the landscape due to

widespread land use land cover (LULC) changes have been

acknowledged as prime agents towards contributing global

warming with the enhanced emissions as well as loss of

carbon sequestration potential. LULC changes information

provide vital details on natural resources availability, its

utilization, etc. for evolving appropriate management

strategies to ensure sustainability of natural resources.
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Thus, LULC changes in a region are the outcome of the

complex interaction of policy, economics, management,

culture, and environmental factors. Drastic changes in

LULC will have significant impact on biodiversity [2],

climate [3, 4], hydrological cycles [5, 6], biogeochemical

dynamics [7, 8], sustainability of natural resources [9]. This

will have intensive effects on land surface climate by

altering the exchange of heat, moisture and albedo at

regional and global scales [4, 10–12]. Clearing of large

scale forests will contribute to releasing the carbon stored

in vegetation and soils by altering their physical as well as

chemical properties, which affects the global climate by

increasing levels of greenhouse gases in the atmosphere,

decreasing evapotranspiration and hydrological cycle [13].

Land use changes in forested landscapes has gained

momentum in the middle of the last century [14] due to

industrialization, urbanization and globalization. Mitiga-

tion of these impacts entails actions at local/micro scale by

preservation of ecosystems [15]. Knowledge of agents in

LULC transition with the quantification of landscape

dynamics would help in framing conservation strategies

towards sustainable land uses.

LULC changes due to unplanned developmental

activities have been posing serious challenges on the

carrying capacity of landscape. Integrating environmental

dimensions into land use planning and management pro-

cess can greatly contribute to the sustenance of natural

resources. Sustainable landscape management requires

the advance information of likely land use changes, which

would help in evolving mitigation strategies to sustain the

livelihood of dependent communities. This entails mod-

eling and visualization of landscape transitions with

temporal spatial data. The change detection analyses have

gained prominence with the availability of spatial data

since 1970’s. Multi resolution spatial data with advances

in modeling techniques would aid in the sustainable

resources management [16]. This would help to examine

and statistically define the spatial patterns of LULC

changes at a precise interval. Modeling helps in identi-

fying the most appropriate spatial pattern of future land

uses and this information helps in assessing resource

availability and serves as a decision support system (DSS)

for managers, planner and decisions makers [17, 18].

Modeling and visualization will satisfy numerous condi-

tions for sustainable development path such as conser-

vation of biological and cultural diversities through

ecosystem protection [19]. Apart from inventorying,

mapping, monitoring and change analyses, modeling and

visualization would aid in empirically interpreting the

consequences of spatial changes. Predictive statistical and

geospatial models used for modelling landscape dynamics

are logistic regression models [20], spatial dynamic model

[21, 22], spatial Markov chains (MC) [23, 24], Cellular

automata (CA) [25] and multi criteria decision making

(MCDM) techniques [26]. CA model the local interaction

of non-linear spatial process reflecting the dynamic sys-

tem evolution [27–29] with consideration of discrete grid

(lattice) units and its patterns.

MC-CA based simulation has advantages than other

traditional procedures, but fails to link additional drivers

of land use transitions [30]. While, techniques integrating

agents and distance based relationship of driving forces

include Multi criteria evaluation (MCE), Analytical

Hierarchical Process (AHP) [31], Fuzzy based estima-

tions. Fuzzy based modeling with geographic information

system (GIS) helps in integrating the expert knowledge on

spatial data (to determine the weight of each factor),

which influences land suitability criteria [32]. However,

standalone fuzzy system is insufficient for modeling

complex natural resource systems, where relations

between indicator variables are difficult to model [33, 34].

Integrated approach of fuzzy system with AHP has a

potential to enhance the effectiveness of factor evaluation

and accuracy by ranking alternatives for land suitability

assessment [35, 36]. Analytical Hierarchy Process (AHP)

is a well-known weight evaluation method has steps as

specifying the hierarchical structure, determining relative

important weights of the criteria and sub criteria,

assigning preferred weights of each alternative and

determining the final score [37]. AHP decision hierarchy

helps in identifying ‘n’ criteria and ‘m’ alternatives in

interactive decision making by comparing the relative

importance of two elements (criteria or alternatives) ‘i’

and ‘j’ for a given pairwise comparison matrix of the

likelihood of events for all possible alternative ranking

outcomes [38, 39]. Fuzzy-AHP suitability maps are cre-

ated by systematic, multi factor analysis for evaluating

influence of land suitability [40, 41]. Model inputs include

a variety of physical, cultural, economic and environ-

mental factors [42]. CA-Markov models combined with

MCE and AHP provides spatial land use transitions for

distinct time steps [30, 43]. Fuzzy based estimations

accounts for the influence of factors on land use based on

distance relationship which aid in spatial allocation pro-

cess of the simulation and model future changes. Hybrid

approach of Markov Chain cellular automata coupling

with fuzzy logic algorithms [44] helps to overcome the

limitations of standalone CA model’s neighborhood effect

and thereby improves relative probability [45]. The

objectives of this communication are:

1. Quantification of land use changes during 2007-2013

across three agro climatic regions,

2. visualizing the changes in forest cover during

2013–2022 by Fuzzy-AHP-CA analysis considering

the growth agents and constraints,
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3. evaluating the influence of protection measures in

reserve forests towards sustainable management of

forest resources.

2 Study area

The Western Ghats is one among the 35 global hotspots of

biodiversity and it lies in the western part of peninsular

India in a series of hills stretching over a distance of

1600 km from north to south and covering an area of about

1,60,000 sq.km. It harbours very rich flora and fauna and

there are records of over 4000 species of flowering plants

with 38% endemics, 330 butterflies with 11% endemics,

156 reptiles with 62% endemics, 508 birds with 4%

endemics, 120 mammals with 12% endemics, 289 fishes

with 41% endemics and 135 amphibians with 75% ende-

mics. The rich biodiversity coupled with higher endemism

is due to the humid tropical climate, topographical and

geological characteristics, and geographical isolation

(Arabian Sea to the west and the semiarid Deccan Plateau

to the east) [6, 9].

Uttara Kannada district is located in the central Western

Ghats at 13�550–15�310N and 74�90–75�100E (Fig. 1) and

spread over an area of 10,293 km2 in the mid-western part

of Karnataka state, India has the unique a distinction of

having highest forest cover in India with abundant natural

resources. The total population in the district is 14, 37,169

(2011) and 29.15% lives in urban regions. The district has

11 taluks (for administrative purposes), which falls in three

agro climatic zones i.e. coastal lands (Karwar, Ankola,

Kumta, Honnavar and Bhatkal taluks), Sahyadrian interior

(Supa, Yellapur, Sirsi and Siddapur taluks) and the eastern

margin plains (Haliyal and Mundgod taluks). The region

has luxuriant tropical climate coupled with heavy rainfall,

harbors large number of endemic flora and faunal species

of varied species composition, diversity, richness across

different habitats, families etc. Unplanned developmental

activities during the past three decades in the forested

landscape has resulted in fragmentation of forests, evident

from barren hill tops, reduction in the quantity and duration

of water flow in streams apart from affecting ecologically

sensitive habitats of diverse flora and fauna. The forest

cover has undergone major changes, with the drastic

reductions in primary forests. Intense agricultural activities

coupled with developmental projects and monoculture

plantations of exotic systems have depleted the native

forest cover. The increase in exotic species plantation has

led to removal of primeval forest cover and caused local

extinctions of keystone species. Fragments of primary

forests are existing now in the form of sacred groves,

protected areas, etc.

3 Materials and method

Figure 2 outlines the procedure followed in the quantifi-

cation and visualization of land use changes. This involved

analysis of temporal land uses and visualization of likely

changes through consideration of influencing agents.

3.1 Landscape dynamics

The temporal remote sensing data of Lands at ETM ?

series (2004, 2007, 2013) were downloaded from GCLF

(http://glcfapp.glcf.umd.edu:8080/esdi/) and IRS P6

(2010) data was procured from National Remote Sensing

Fig. 1 Study area—Uttara Kannada district
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Center (http://nrsc.gov.in), India. ASTER DEM (30 m)

was used to derive slope details of the region. The Survey

of India topographic maps of 1:50,000 and 1:250,000

scale and online spatial data (http://bhuvan.nrsc.gov.in;

https://www.google.com/earth/) were used to generate

base layers of administrative boundaries, drainage net-

work, road network, etc. GCPs (Ground control points)

and training data is collected using pre calibrated GPS

(Global Positioning System) from field. Land use analyses

involved (i) generation of False Color Composite (FCC)

of remote sensing data (bands–green, red and NIR), (ii)

selection of training polygons (training data) covering

15% of the study area (polygons are uniformly distributed

over the entire study area) (iii) loading these training

polygons co-ordinates into pre-calibrated GPS, collection

of the corresponding attribute data (land use types) for

these polygons from the field, (iv) supplementing this

information with Google Earth and (v) 60% of the training

data has been used for classification, while the balance is

used for validation or accuracy assessment. Error matrix

(also referred as confusion matrix) kappa (j) statistics and
overall (producer’s and user’s) accuracies were assessed.

The land use analysis was done using supervised classi-

fication technique based on Gaussian maximum likeli-

hood algorithm using remote sensing data and training

data collected from field. GRASS GIS (Geographical

Resources Analysis Support System, http://ces.iisc.ernet.

in/grass), a free and open source software with the robust

support for processing both vector and raster data has

been used for analyzing RS data.

3.2 Visualisation of forest transitions: simulation

and prediction

Raster maps of the constraining factors and transition

factors were generated at common resolution of 30 m for

effective processing time. Likely land uses in 2022 is

generated by (i) Markov Chain transition of base land uses,

(ii) evaluating the driving factors and constraints, (iii)

weightage metric score by fuzzy AHP based estimation and

site suitability maps generation by MCE, and (iv) simula-

tion and future prediction of land use by MC-CA algo-

rithms. The transition probability is computed through MC

analysis using land use maps of 2004, 2007 and 2010. The

driving forces of land use changes and constraints

(Tables 1 and 2) were identified based on the land use

history, review of published literatures and policy reports.

Major drivers of landscape transitions are slopes, major

highways, industries, core residential areas, etc. Entities

such as water bodies, river coarse, protected areas and

reserve forest are considered as constraints as they are

likely to change. The contributing factors for different land

uses were normalized between 0 and 255 through fuzzifi-

cation, 255 indicates maximum probability of change,

Fig. 2 Method adopted in the study
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while 0 indicates of no changes (Fig. 3), which allows to

translate qualitative assessment into quantitative data by

providing more logical and precise results. Constraints of

land use transition is given in Fig. 4. The pair wise com-

parison matrices were generated across three agro climatic

regions and their relative weights as Eigen vectors were

estimated using AHP [46] to measure the degree of

importance between criteria or factors i and j. A response

matrix A = [aij] is generated to measure the relative

dominance of item i over item j with the decision maker’s

assessments aij, as pairwise comparisons that follow a

uniform probability distribution (Eq 1).

Table 1 Driving forces of landscape transition and constraints

S.no. Factors Description

1 Slope Related to erosion, especially in the high forested areas such as Sahyadri region of study area. Priority was

given to lower slope inclination for land use transformation [51–53]

2 National highways,

major roads

The major transit ways have influence of land transformation in forested areas and also responsible for

fragmentation, edge formation [9, 54], increases housing density and agriculture

3 Industrial activity Industries and associated development in any region will have influence on landscape transition [55, 56]

4 Core built-up areas Core built-up areas have greater probability of expansion in nearby areas next to it and act as a major

transition of land use [57]

Table 2 Constraints of land use change

S.no. Constraints Description

1 Protected areas Protected areas are prime regions of land scape which protect biological diversity, maintains ecological integrity and

provides livelihoods to local communities [58–63]. Anshi Dandeli Tiger reserve (ADTR); Aghanashini lion tailed

macaque (LTM) Conservation Reserve; Bedthi Conservation Reserve were created for conservation of tigers &

hornbills, LTM, Myristica swamps and diverse flora, fauna. These regions are acting as an important corridor for

wild life and endemic flora in Western Ghats of Karnataka, protected by Union government of India

2 Reserve forests These regions are protected under Indian Forest Act, 1927 (an area duly notified under the provisions of India Forest

Act or the State Forest Acts having full degree of protection) by state government for conserving endemic flora and

fauna

3 Water bodies Considered as a major source for food production and further expansions cannot be allowed in these regions. The land

use changes in watershed will result in irreversible loss [6, 64, 65]

4 Slope Land use changes in greater slopes ([30% is considered) will result in landslides and higher erosion [66, 67]

Fig. 3 Factors of land use influence by fuzzy distance tool measurement
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aij ¼
Wi

Wj

� eij ð1Þ

where Wi and Wj are the priority weights belongs to vector

W and
P

Wj ¼ 1, eij is inconsistency observed in the

analysis.

The comparison matrix elements were compared pair

wise to relate single element at the level directly and

ranked by eigenvector of the matrix [47] and eigenvalue of

kmax is computed [48]. The consistency index CI is com-

puted to evaluate consistency of the judgment matrix

(Eq. 2). Consistency ratio (CR) were evaluated for three

regions and acceptable CR from 0.04 to 0.09 is obtained for

each land use (Table 3) based on (Eq. 3). CR value below

0.1 indicates the model is consistent, obtained by the

probability of the random weights from the landscape

factors [49] and applied for subsequent processes. CA

process is implemented based on the site suitability (the

probability of that cell’s changing to a given class in the

future) and the transition matrix (contains the number of

cells that change in the time step derived from the number

of cells of each class by multiplying the probability matrix)

generated from Fuzzy-AHP. The simulation and prediction

of land use changes at every single time step is computed

based on current land use and the state of neighboring

pixels. Diamond filter of 5 9 5 kernel size was applied to

the cellular automata to considered neighborhood land use

effects. Two scenarios were designed to emphasize the

environmental protection and violation in the region to

visualize future state of forests (i) high protection scenario

considering the protection of reserve forest with appropri-

ate regulatory mechanism and (ii) least protection scenario

(WRF-without reserve forest protection) with increase in

population and erosion of forest resources. The Kappa

statistic is an excellent measure for comparing a map of

‘‘reality’’ versus some ‘‘alternative ‘‘map of higher accu-

racy [50]. The accuracy of prediction is assessed through

Kappa statistics by measuring agreement between pre-

dicted and actual land uses.

CI ¼ kmax � n

n� 1
ð2Þ

where CI is the consistency index, kmax is the largest or

principal eigenvalue; n is the order of the matrix. If CI = 0,

the matrix had a complete consistency. The worse consis-

tency will represent greater value of CI.

The consistency ratio (CR) is calculated (Eq. 3) by

CR ¼ CI

RI
ð3Þ

where RI is the average of the resulting consistency index

depending on order of the matrix. If CR value is less than

Fig. 4 Constraints of land use transition

Table 3 Weightage Eigen

vector and consistency ratio of

each land use

Land use

Factors

Eigen vector of weight for each land use

Forest Plantations Horticulture Crop land Built-up Open land Water

Slope 0.10 0.14 0.23 0.17 0.08 0.10 0.10

Industries 0.10 0.18 0.13 0.10 0.11 0.21 0.18

Major motor ways 0.20 0.10 0.25 0.19 0.21 0.06 0.13

Core built-up areas 0.59 0.58 0.38 0.54 0.61 0.63 0.60

Consistency ratio 0.04 0.05 0.09 0.09 0.08 0.07 0.05

122 T.V. Ramachandra et al.

123

Author's personal copy



0.10, the matrix had a reasonable consistency, otherwise

the matrix should be altered for better CR.

4 Results and discussion

The spatial pattern analyses using temporal remote sensing

data, highlights the extent of forest transition, which are

given in Figs. 5, 6, 7, 8. The forest cover in coastal region

has decreased from 66.5 (2004) to 59.06% (2013) due to

implementation of unplanned projects such as project Sea

Bird, Kaiga nuclear power house, Kadra dam, etc., increase

in human populations at certain pockets of Karwar, Bhat-

kal, Honnavara taluks in coastal regions. The increase in

population density has cleared major forest cover as built-

up area has increased from 3.98 to 4.5% and plantations

have increased from 5.69 to 9.04%. Sahyadri region is the

core part of central Western Ghats with lush greenery,

mountains, network of perennial streams and Arecanut

gardens in the valleys. The evergreen to semi evergreen

forested area has been transformed into moist deciduous

forests due to disturbances and some have been converted

into plantations such as Acacia auriculiformis, Casuarina

equisetifolia, Eucalyptus spp., and Tectona grandis etc.

The commercial plantation is practiced prominently in

Bedthi/Gangavali river valley and Sharavathi river estuary

of Honnavar. The forest cover has lost from 65.98% to

60.6% by 2013 due to increase in built-up area (2.12%) and

plantations (17.29%). Haliyal and Mundgod taluks form

transitional zone, which are prone to economic activities.

The market based cropping pattern and forest department

based initiatives for plantation of exotic species shown

Fig. 5 Land use change across coastal region from 2004 to 2013

Fig. 6 Land use change across Sahyadri interior region from 2004 to 2013
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equally adverse effects on forests. The forest cover has lost

from 27.35 to 15.17% (2013) by increase in plantations

34.28–39.82%. The area under paved surface has reached

to 6.3 from 2.9% (2004), due to population increase and

associated economic activities. Classification accuracy is

assessed by considering the reference data collected from

field. Table 4 with higher kappa and overall accuracy

values highlights that the classification is satisfactory.

Simulation and modelling of transition at temporal scale

is done using Fuzzy-AHP-CA-MC technique. Markov

chain is used to determine the zone wise transition proba-

bility during 2004 and 2007 with loop time of 3 years. CA

Fig. 7 Land use change across plains from 2004 to 2013

Fig. 8 Land use dynamics across three agro climatic zones
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with the site suitability and the transition matrix (generated

by MC and FUZZY-AHP-MCE) predicted spatially the

changes under two scenarios based on the neighboring

pixels for 2022 (with the knowledge of transitions during

2004–2007, 2007–2010 and 2010–2013). The accuracy of

prediction is evaluated through Kappa statistics by com-

paring the simulated data with the actual land uses of 2010,

2013 (Table 5 for both scenarios: P* (predicted consider-

ing the implementation of protection measures) and

P_WRF: Prediction without the protection of reserve for-

ests), which indicates that CA MC is a reliable estimator.

The Fuzzy distance measurement has provided the

potential transition of each land use based on factors that

promote transition. AHP showed good consistency and

found suitable for predicting land uses. The projected land

use of 2022 for coastal region (Fig. 9, Table 6) shows

forest cover will reach to 56.76% with the implementation

of protection measures by regulatory framework. The

urban expansion from 4.49 to 8.51% with the industrial

growth and economic activities. The increase in plantation

area is due to the conversion of forests and also planting in

degraded forest patches. Scenario 2 reflecting the lack of

protection in the coastal region will result in rampant forest

changes. The forest area will reduce to 54.07% with the

Table 4 Accuracy assessment

of land use analysis
Year 2004 2007 2010 2013

Categories PA UA PA UA PA UA PA UA

Forest 92.29 98.62 86.13 37.46 89.18 91.10 96.28 76.45

Plantations 88.53 96.13 98.27 91.32 91.42 92.44 99.31 79.49

Horticulture 98.09 80.05 60.04 96.5 97.58 98.46 86.50 93.84

Crop 88.25 96.33 93.97 89.74 86.05 84.64 55.04 93.02

Built-up 88.26 80.05 79.66 81.85 99.93 96.96 93.39 62.50

Open fields 86.50 93.84 98.56 93.31 86.49 95.26 95.59 94.63

Water 98.82 90.67 96.94 97.19 97.86 81.39 99.71 99.17

Kappa 0.82 0.86 0.9 0.88

Overall Accuracy 88.26 91.02 91.24 92.47

Table 5 Validation of actual

land use with predicted and

Kappa value (P* represents

Projected)

Zone Coastal zone Sahyadri interior Plains

Index P*_2013 P_ WRF 2013 P_2013 P_ WRF 2013 P_2013 P_ WRF 2013

Kno 0.89 0.91 0.92 0.91 0.94 0.92

Klocation 0.87 0.9 0.95 0.95 0.95 0.93

Kstandard 0.83 0.87 0.9 0.9 0.92 0.89

Fig. 9 Predicted and future land use of Coastal region (2013–2022 under two scenrios)
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increase in area under plantations, horticulture and built-up

in the costal taluks—Karwar, Bhatkal, and Honnavar.

Sahyadari Interior region (Fig. 10) shows moderate

disturbances (60.61 (2013) to 55.62% (2022)) under high

protection scenario with changes in plantations and built-

up land use classes. The ADTR, ALTM, Bedthi conser-

vation reserve areas are under protection and will remain so

with the minimal disturbances. Scenario 2 highlights the

decline of natural forest cover from 60.61 (2012) to

50.11% (2022) with increase in monoculture plantations

from 17.29 to 20.33%. The same trend is noticed in Sirsi,

Siddapur, Yellapura taluks except Supa. The area under

built-up cover will reach 2.12 to 7.23% and horticulture

will be 11.83% (in 2022). As per the scenario 2, forest

patches in this region would be only in protected areas and

Kans—scared forests by 2022. Kans are relic forest pat-

ches, protected since historical times and are expected to

remain under conservation. The predicted land uses under

two scenarios in the eastern plains (Fig. 11) show spurt in

built-up from 6.26 to 7.81 and 8.16%. The existing towns

and villages will be more urbanized due to neighbor effect

of urban agglomerations—Hubli, Dharwad and Belgaum.

The forest cover will be 11% and there would be an

increase in plantations from 39.42 to 42% (2022). The

unauthorized land conversion in plains would lead to an

increase in agriculture and horticulture (31.69%).

The series of hydroelectric projects in the coastal region

have adversely affected the ecology and biodiversity. The

fisheries sector in the Sharavathi river is now facing serious

impediment, due to the loss of spawning and breeding

grounds of fishes (now only 43 taxa) and 50% reduction in

the total fish taxa with the implementation of power pro-

jects at Linganmakki and Gersoppa [68]. This region is

undergoing large scale forest transitions after 2005 with the

implementation of large scale developmental projects

(Project Sea Bird at Karwar, etc.), medium scale industry,

small scale Industrial estate (comprises of 357 industries)

and other developmental activities. Konkan railways,

Fig. 10 Predicted and future land use of Sahyadri Interior (2013–2022 under two scenrios)

Fig. 11 Predicted and future land use of Eastern Plains (2013–2022 under two scenrios)
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National Highway 17 (NH-17, now NH-66) from Goa to

Udupi, National Highway 63 (NH-63) from Hubli to

Ankola have also contributed significantly to forest

degradation. Konkan Railway is the longest railway line in

the region has given push to urbanization with emergence

of new towns, creation of major ports. These activities have

impacted the environment as well as socio-economic

aspects of the west coast [69]. The forests in Sahyadri

region are in different stages of secondary succession by

transformation of evergreen forests into moist deciduous

forests due to numerous anthropogenic factors such as

heavy exploitation, large scale unplanned forest planta-

tions, encroachment of forests [70]. Undulating terrains

with the community protected reserves have several pri-

mary forest patches with greater than 80% evergreenness

and endemism [71]. However, market induced commercial

plantations such as Areca catechu, Cocos nucifera has

transformed major croplands and swampy areas as horti-

culture plantations (10.99%) by 2013. The tourism activi-

ties are higher than all the taluks in plains because of

Anshi-Dandeli tiger reserve, Anshi hornbill’s national park,

Kali river rafting and many more jungle resorts.

The agent based modeling has facilitated to visualize

landscape development and transition under higher pro-

tection and without any control regulations. Area under

built-up has increased over time with the loss of forest

lands, agriculture and natural open spaces. This change has

allowed recolonization of forest cover by shrub and exotic

tree species across three agro climatic zones. Land use

change modeling with rich spatial data provided a proper

environment analyze and display spatial data to predict

land use changes based on several independent spatial

variables. Agent based prediction of land uses has helped in

visualizing likely changes, which is essential to formulate a

comprehensive land use management policies focusing on

restoration of degraded forest patches and mitigation of

further impacts on the pristine ecosystem. Further, pre-

diction through logistic regression, frequency ratio, and

weights of evidence techniques could be reinforced by

considering the local expert knowledge [72, 73] to analyze

the probability of occurrence of a dependent variable with

each class of independent variables [74, 75]. The inclusion

of variability in land use drivers, socio-economic variables,

the processes inducing changes and their influences on

modeling and prediction would augment the prediction

accuracy.

5 Conclusion

The high conversion rates of natural vegetation by

anthropogenic activities will have vulnerability on

ecosystem and their support for livelihood. The temporal

remote sensing data in conjunction with other supporting

attribute data, influential factors used for visualization of

land use transition at temporal scale using Fuzzy-AHP-CA-

MC method predicted two different future scenarios of land

use (2022) based on with appropriate regulatory mecha-

nism. Coastal region shows loss of forest cover from 66.55

(2004) to 56.76%, by increase in built-up area from 3.85 to

8.51% (2022). Sahyadri Interior region shows moderate

forest cover loss due to higher protection, seen progression

in plantation from 15 (2004) to 20.60% (2022) and horti-

culture uses from 3.8 to 4.89%. The land use of scenario1

(2022) indicates that environmental restriction fulfilled the

goals of reducing forest land transition as established for

the restricted areas. If land use changes occur according

scenario 2 (2022), plantations will dominate making the

legal borders indistinct and maintaining the biological

conservation will be a challenging task in this rich biodi-

versity hotspot. The implementation of a restrictive legal

framework for environment protection has resulted as an

efficient barrier to human pressure within high forested

area. The prediction results in open fields and forest classes

were registered net loss in area while built-up, agriculture

and horticulture land use classes were registered as net gain

in both land use scenarios. The present communication has

integrated restrictive legal environmental protection sce-

narios demonstrates a powerful and persuasive tool to

support planning and policy for sustainable landscape

development.
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