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Abstract

Landscape dynamics driven by land use land cover (LULC) changes due to anthropogenic activities altering the
functional ability of an ecosystem has influenced the ecology, biodiversity, hydrology and people’s sustainable
livelihood. Forest landscape dynamics have been quantified using spatial data acquired through space borne
sensors along with collateral data. Vegetation cover assessment of Central Western Ghats shows the decline of
vegetation from 92.87% (1973) to 80.42% (2016). Land use analyses reveal the trend of deforestation, evident from
the reduction of evergreen-semi evergreen forest cover from 67.73% (1973) to 29.5% (2016). The spatial patterns of
diverse landscape have been assessed through spatial metrics and categorical principal component analysis, reveal
a transition of intact forested landscape (1973) to fragmented landscape. The analysis has provided insights to
formulate appropriate policies to mitigate forest changes in the region to safeguard water and food security apart
from livelihood of the local people for sustainable development.
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Research Highlights
• The objective of the current study is to assess the spatial patterns of

landscape changes in the forested district (Uttara Kannada district)
of Central Western Ghats in Karnataka, India.

• Vegetation cover assessment shows the decline of vegetation from
92.87% (1973) to 80.42% (2016).

• Land use analyses reveal the trend of intensive deforestation,
evident from the reduction of evergreen-semi evergreen forest
cover from 67.73% (1973) to 29.5% (2016).

• The present communication is aimed to understand the role of
landscape metrics to define relationship between land use and
landscape structure.

• The spatial patterns of diverse landscape have been assessed
through spatial metrics and categorical principal component
analysis; reveal a transition of intact forested landscape (1973) to
fragmented landscape with the increased patchiness (2016).

• This analysis provided insights to formulate appropriate policies to
mitigate forest changes and devising appropriate effective
management and decision making towards the sustainable
development of the region.

Introduction
Landscape consists of heterogeneous biophysical elements with

dynamic interactions [1] that ensures the sustainability of natural
resources. The complex interactions among ecological, economic,
social and cultural entities, which depend on the structure of the
landscape play a decisive role in the respective ecosystem’s functions
(cycling of water and nutrients, bio-geo-chemical cycles, etc.). This

necessitates understanding of landscape structure (size, shape, and
configuration) and constituent’s spatial patterns (linear, regular and
aggregated) through land use land cover [LULC] analysis. Land cover
[LC] relates to the discernible Earth surface expressions, such as
vegetation or non-vegetation (soil, water or anthropogenic features)
indicating the extent of Earth’s physical state in terms of the natural
environment [2-4]. Land use [LU] provides human uses of the
landscape, e.g., habitations, agricultural lands, etc. Accelerated LULC
changes in the recent decades by the enhanced anthropogenic activities
have been playing a major role in altering climate and biogeochemistry
patterns at global as well as at regional scales [5,6]. Burgeoning
population and increased consumption levels has led to the conversion
of about 40 percent of Earth's surface to cropland, etc. at the expense of
forests and natural grasslands [7]. Uncontrolled LULC changes affect
health of ecosystem [8,9] and determine the vulnerability of humans,
locations due to climatic, economic or socio-political perturbations
[10-12]. Temporal LULC information is vital for elucidating landscape
dynamics, essential for regional planning and sustainable management
of natural resources [7,13].

LULC information has become prime prerequisites to overcome the
problems of haphazard, uncontrolled development, quantifying
deteriorating environmental quality through time. Monitoring and
management of natural resources requires accurate, timely, synoptic
and repetitive coverage over large area across various spatial scales.
Remote sensing (RS) data along with Geographic Information System
(GIS) and GPS (Global positioning system) help in inventorying,
mapping and monitoring of earth resources for an effective and
sustainable landscape management [3,14,15] with better spectral
(Multi Spectral data, Hyper spectral data, etc.) and spatial resolution
data (Low, Medium, High). Landscape metrics also known as spatial
metrics or spatial pattern statistics are universally well acknowledged
to perceive shape and pattern of landscape heterogeneity of different
patches at local scale [16-21]. Cluster analysis helps in grouping the
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components to compute the universality, strength, and consistency of
the landscape structure components [22,23]. Categorical Principal
Component Analysis (CATPCA) is an effective method to reduce the
number of dimensions in the data while retaining variability. Standard
Principal Components Analysis (PCA) assumes linear relationships
among variables but CATPCA optimally quantifies variables in the
specified dimension helps in modeling nonlinear relationships among
variables [24,25]. In CATPCA, model estimation and optimal
quantification are alternated through use of an iterative algorithm that
converges to a stationary point where the optimal quantifications of
the categories do not change further.

Objectives
The objective of the current study is to assess the spatial patterns of

landscape changes in the forested district (Uttara Kannada district) of
Central Western Ghats in Karnataka. This involves,

• Temporal analysis of LULC changes considering RS data;
• Analyses of the spatial patterns of landscape changes through

spatial metrics at temporal scale to define relationships between
land use and landscape structure; and

• Prioritization of regions through visualization of spatial patterns of
landscape dynamics.

Materials and Methods

Study area
Uttara Kannada district in Karnataka State, India (Figure 1) is

blessed with highest forest cover (among all districts in India),
perennial streams and productive estuaries. The district has a tropical
climate with the mean annual rainfall of 4237 mm and elevation ranges
from 0 to 1050 m (above Sea level). The district has 140 km coastal line
and surrounded by Belgaum district, Goa state in North, Shimoga and
Udupi districts in the South, Dharwad district in the East, Arabian Sea
forms the West border. The west flowing rivers (Kali, Bedthi,
Aganashini, Sharavathi, Venkatapur) break the shoreline of Uttara
Kannada by deep and wide mouthed estuaries, larger creeks with
ample biodiversity. The district forms three distinct agro climatic zones
covering 11 taluks (local administrative division) due to its varied
topography, i.e., coast, hilly or Sahyadri Interior and plains. The total
population of the district is 1502454 (as per 2011 census) with 146
persons per sq.km density. The costal and plains are expressing higher
population presence compared to the undulating hilly taluks. The
forests are stimulated by heavy rainfall, start growing within a few
kilometers from the coast with lofty, dense canopies of tree crowns and
shrub growth. As one moves from coast to Ghats (Sahyadri Interior),
the forests are semi-evergreen to evergreen with grassy banks. Forest
ecosystems in Uttara Kannada district have witnessed major
transformations during the past four decades. Implementation of
developmental activities without taking into account the ecological
significance and services provided by them in meeting the livelihood of
local population has resulted in the degradation of forests through
large scale land use changes.

Figure 1: Study area-Uttara Kannada district, India.

Data
Land cover change elucidation relies on an accurate interpretation

of baseline conditions and changes in the surface spectral properties
over time. LULC dynamics of Uttara Kannada district have been
analyzed using temporal Landsat series RS data (1973-2016) with
ancillary data and field data as given in Figure 2. Ancillary data include
cadastral revenue maps (1:6000), the Survey of India (SOI)
topographic maps (1:50000 and 1:250000), vegetation map (1:250000)
of South India developed by French Institute (1986). Digitized
topographic maps helped in the extraction of ground control points
(GCP’s) to rectify RS data. Vegetation map of South India (1986) of
scale 1:250000 [26] was useful in identifying various forest cover types
during 1980’s, required for classifying 1980’s RS data. Other ancillary
data includes land cover maps, administration boundary data,
transportation data (road network), etc. Pre-calibrated GPS (Garmin
GPS unit) were used for field data collection and used in geo-
referencing, classifying RS data as well as validation. The Landsat data
of 1973 with a spatial resolution of 57.5 m × 57.5 m (nominal
resolution) were resampled to 30 m (nominal resolution) to maintain
the uniform resolution across different time (1989-2016) data. Landsat
ETM+ bands of 2013 were corrected for the SLC-off through image
enhancement and restoration techniques, followed by nearest-
neighbor interpolation.

Land cover analysis essentially involves delineating the region under
vegetation and non-vegetation, which is done through the
computation of vegetation indices NDVI (Normalized Difference
Vegetation Index), given in equation 1. Among all techniques of land
cover mapping through NDVI is most widely accepted and being
applied [21,27], which ranges from +1 to -1. Very low values of NDVI
(-0.1 and below) correspond to non-vegetation (soil, barren areas of
rock, sand, built up, etc.) and NDVI of zero corresponds to water
bodies. Moderate values represent low density vegetation (0.1 to 0.3),
while high values indicate thick canopy vegetation (0.6 to 0.9). The
outcome of NDVI (for the latest time period) was verified through
field investigation.���� = ��� − ����+ � (1)
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Land use analyses involved (i) generation of False Color Composite
(FCC) of RS data (bands–green, red and NIR). This composite image
helps in locating heterogeneous patches in the landscape, (ii) selection
of training polygons by covering 15% of the study area (polygons are
uniformly distributed over the entire study area) (iii) loading these
training polygons co-ordinates into pre-calibrated GPS, (vi) collection
of the corresponding attribute data (land use types) for these polygons
from the field, (iv) supplementing this information with Google Earth
and (v) 60% of the training data has been used for classification based
on Gaussian Maximum Likelihood algorithm, while the balance is
used for validation or accuracy assessment (ACA). The land use
analysis was done using supervised classification technique based on
Gaussian maximum likelihood algorithm with training data. The land
use is classified under 11 categories such as Built-up (B), Water (W),
Crop land (C), Open fields (O), Moist deciduous forest (MD),
Evergreen to semi evergreen forest (ES), Scrub/grass (SG), Acacia/
Eucalyptus/Hardwood plantations (HP), Teak/Bamboo/Softwood
plantations (SP), Coconut/Areca nut/Cashew nut plantations (CP),
Dry deciduous forest (DD). GRASS GIS (Geographical Resources
Analysis Support System, http://ces.iisc.ernet.in/grass)-free and open
source software has been used for analyzing RS data by using available
multi-temporal “ground truth” information. Earlier time data were
classified using the training polygon along with attribute details
compiled from the historical published topographic maps, vegetation
maps, revenue maps, land records available from local administrative
authorities.

Figure 2: Method followed in the study.

ACA is done through error matrix (also referred as confusion
matrix), and computation of kappa (κ) statistics, overall (producer's
and user's) accuracies to evaluate the quality of the information
derived from remotely sensed data considering training data. Kappa
statistic compares two or more matrices and weighs cells in error
matrix according to the magnitude of misclassification [28-30]. LU
change rate for each category are computed by considering respective
land use spatial extent in two time periods. The annual rate of change
is computed using equation 2 to identify magnitude of changes in the
respective land use category [31-33]. This approach helps to determine
change rates from “known cover” as observed forest cover by providing
areas that had changed to non-forest [34]. This computation is based
on the area that was classified as forest in the first date and changed to
non-forest in the second date.

�ℎ���� ���� = ln(��1)− ln(��0)(�1− �0) × 100 (2)
Where At1 is area of land use class in current year, At0 is area of class

in base year, t1 is current year, t0 is base year and Ln is natural
logarithm. The equation will result % change of each land use class
with negate and positive. The negative changes indicate to rate of loss;
whereas positive change rate indicate gain in land use class.

Spatial patterns of landscape dynamics are assessed through
prioritised [3,35-40] spatial metrics computed using Fragstats 3.3 [16].
Prioritised indices such as Class area (CA) has provided temporal
change in forest area over non-forest cover in the landscape. Number
of patches (NP) is a fragmentation based indices to account forest
status, as less NP value represents intact forest and greater values
results more fragmented patches. PAFRAC (Perimeter-Area Fractal
Dimension) index indicates forest patch perimeter, stating either
simple (homogeneous aggregation or intact forest present) or complex
(the fragment that are being formed by intrusion). Patch indices (such
as LPI- largest patch index) is computed to understand the process of
deforestation as it provides larger patch in the landscape. Edge density
(ED) analyses whether the region has simple edges or complex due to
fragmentation. AREA_MN illustrates mean of forest area representing
higher mean as more aggregation and vice versa. Shape metrics such as
Landscape Shape Index (LSI), NLSI (Normalized Landscape Shape
Index), Mean shape index (SHAPE_MN) and Mean patch fractal
dimension (FRAC_MN) explain shape complexity and dynamic
pattern of land use. Mean Euclidean nearest neighbour distance
(ENN_MN) provides the information of disturbance regimes, as
intermediate patches such as developments, clearing of forest patches
lead to increase in nearest neighbour distance of forest patches.
Clumpy Index shows clumped/aggregation of forest patches in the
landscape, Aggregation index (AI) refer to specific forest class
aggregation and is independent of landscape composition.
Interspersion and Juxtaposition (IJI) is a measure of patch adjacency,
values will decrease due to increase in the neighbouring forest patch
distance in all the directions. CATPCA is the nonlinear PCA used to
reduce the observed variables to a number of uncorrelated principal
components by using student copy of IBM SPSS version 20.

Results and Discussion
Spatio temporal Landscape dynamics the spatial extent of temporal

vegetation computed through NDVI reveals a decline of vegetation
from 97.82% (1973) to 80.42% (2016). Areas under non-vegetation
have increased (Figure 3) to 19.58% (2016) from 2.18% (1973), due to
anthropogenic activities (Figure 4). Comparative assessment of land
use categories reveals the decline of vegetation cover in the district
(Table 1) during 1973 to 2016, Figure 5). The reduction of area under
evergreen forests from 67.73% (1973) to 29.5% (2016) due to
anthropogenic activities. Transition of evergreen-semi evergreen
forests to moist deciduous forests, and some have been converted into
plantations (such as Acacia auriculiformis, Casuarina equisetifolia,
Eucalyptus spp., and Tectona grandis etc.) constitute 10.78% and 7.67%
respectively. Enhanced agricultural activities is evident from the
increase of agricultural land use from 7 (1973) to 14.3% (2016) and the
area under human habitations have increased during the last four
decades, evident from the increase of built-up area from 0.38% (1973)
to 4.97% (2016). The dry deciduous forest cover is very less (1.27%)
and is found mainly in the north eastern part of the district in
Mundgod taluk and partly Haliyal taluk.
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Figure 3: Temporal land cover analysis.

Figure 4: Land cover analysis from 1973 to 2016.

Figure 5: Uttara Kannada district land use change from 1973 to
2016.

Unplanned developmental activities coupled with the enhanced
agriculture and horticultural activities have aided as prime drivers of
deforestation, leading to the irreversible loss of forest cover with the
reduction of ecosystem goods and services. The ACA (Table 2), verified
using field data and Google earth data shows an accuracy of 82-92%
with consistent results. Cautious steps were taken to make sure
separate data sets used for training and validation to attain greater
accuracy by consistent classification and confirmation. Category-wise
land use change rates were computed; higher changes are noticed
during 1973-79 followed by 2010 to 2016 (Figure 6).

Year ? Category (Ha) 1973 1979 1989 1999 2010 2013 2016 Loss/Gain
(1973-2016)

B 3886 9738 12982 21635 28491 31589 51132 47246

W 7681 18527 16604 32983 26119 28113 28228 20547

C 71990 103163 121167 138458 148187 145395 147109 75119

O 14071 15988 34783 21945 30813 37660 42634 28563

MD 95357 102967 143849 179075 166266 161996 164239 68882

ES 696978 589762 531872 423062 367064 330204 303585 -393393

SG 38109 58936 44123 47366 35158 40402 42083 3974

HP 40905 50321 55694 73977 119717 122927 110950 70045

SP 13997 20896 21937 38588 44794 67111 78953 64956

CP 20702 29675 32227 43623 53646 53993 47135 26433

DD 25410 29113 13848 8374 9008 9873 13038 -12372

Total Area 1029086

Table 1: Spatio temporal land use changes during 1973 to 2016.
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Non-forest regions such as agriculture, built environments show an
increasing trend in each time period. The built-up area shows a
positive increase of 15.31% y-1(per year). The evergreen forest shows
change of -2.78% y-1 (1973-1979) and -2.80% y-1 (2013-2016). The
grater loss of evergreen forests can be seen as 3.53% y-1 (2010-2013)
due to major motor ways expansion. Forest plantations and
horticulture show an increase during 1973 to 2016, indicating market’s
role in land conversion. The abrupt land use changes are due to large-
scale developmental activities, increased agriculture to meet the
growing demand of population.

Year Overall Accuracy Kappa

1973 82.52 0.81

1979 84.29 0.81

1989 92.22 0.89

1999 90.71 0.87

2010 91.51 0.89

2013 91.98 0.90

2016 90.0 0.88

Table 2: ACA of the study. Here, PA Producer’s Accuracy and UA
User’s Accuracy.

Figure 6: Temporal variation of land use change rate from 1973 to
2016.

Spatial metrics analysis and landscape prioritization
Spatial metrics were computed to quantify spatial patterns among

three diverse landscapes at class level over time. The analysis of spatial
metrics representing area, edge/border, compactness/dispersion, shape
categories provided an overall summary of landscape composition and
configuration over a period of four decades. CATPCA was carried out
with relative weights of spatial metrics that provided vital insights to
the spatial patterns of landscape. CATPCA considering 1973 and 2016
metrics data retained all components that were significant and the
resulting components that are the major independent dimensions

(Table 3) shows the combination of the categories. The two dimensions
together explained 74.49% cumulative variance with eigenvalues of
7.98 (Dimension-1), 3.196 (Dimension-2) in 1973. The Dimension-1
has significantly positive correlation with SHAPE_MN, FRAC_MN,
PAFRAC, NLSI, CA representing shape complexity property and
negatively with CLUMPY, AI. The Dimension-2 represents NP, ED as
positive and AREA_MN, LPI are showing negative correlation for the
year 1973. Figure 7a shows taluks 1, 3, 4, 5, 9 and 10 representing
forested regions (corresponding to major taluks of three agro-climatic
regions) in 1973 form a single cluster with simple shapes and least
number of patches. Taluks 7 and 2 form a cluster with higher influence
of LPI and IJI indicating the presence of largest forest patches in these
regions. Sirsi (8) taluk show higher fragmentation evident from NP, ED
and large number of edges in the peripheral forested patches. CATPCA
analysis for 2016 depicts cumulative variance of 69.14% under two
dimensions with eigenvalues of 5.7 and 4.7 respectively. Figure 7b
shows response variables exhibited a range of behaviours with respect
to different levels of class proportion at temporal scale. In Dimension
1, NP, LPI, ED, LSI, SHAPE_MN are positively correlated and
PARA_MN, CLUMPY, AI are negatively correlated. Dimension-2
represents CA, AREA_MN as positive and ENN_MN, NLSI represents
negative correlation depicting the property of disaggregation of forest
patches.

As class proportion of forest cover has decreased, there is a large
increase in the standardized CLUMPY and aggregation indices, which
lead to form a single cluster for all coastal taluks with similar spatial
patterns of changes (coastal taluks 1, 2, 3, 4 and partly 5). The Sahyadri
Interior region show intra spatial heterogeneity highlighted by CA, IJI.
The high forested taluk Supa (6) has not expressing any influence of
shape and patch metrics. Taluk 7 has major influence of SHAPE_MN,
ED represents the irregular forest shape by alternation with the
increase of non-forest activities. Taluks 8 had major influence of NP,
LSI and PAFRAC depicting their shape irregularity followed by
fragmentation. The development of new individual non-forest patches,
as reflected by the slightly increases in NP and LSI resulted in more
complicated patch shapes in the meantime, also produced many
smaller and isolated fragmented patches at a temporal scale. Plains
(taluks 10, 11) cluster shows influence of ENN_MN, NLSI as increase
of nearest neighbour of forest patch with decrease of mean area cover
indicating the region is losing its forest cover abruptly at temporal scale
with increase in shape complexity. ED indicates that all taluks
representing simple edges (almost square) in 1973 and transform to
complex with convoluted edges in all directions in 2016 due to
fragmentation with newly developing edges. The landscapes of three
agro climatic zones differ in several ways, most clearly in their
proportion of forest cover and spatial heterogeneity by 2016.
Landscape metrics aided in quantifying the spatial patterns among
three distinct and diverse landscapes. This approach has provided
context for interpretable set of landscape patterns that objectively
represent temporal land use changes in each forested taluk.

Component loadings (1973 and 2016)

SNO Spatial metrics
Dimension (1973) Dimension (2016)

1 2 1 2

1 CA 0.649 -0.688 0.35 0.806

2 NP 0.370 0.743 0.786 -0.423
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3 LPI -0.228 -0.634 0.767 0.556

4 ED 0.633 0.676 0.801 0.072

5 LSI 0.991 -0.113 0.764 -0.348

6 AREA_MN -0.044 -0.762 0.187 0.86

7 SHAPE_MN 0.986 -0.146 0.907 0.009

8 FRAC_MN 0.986 -0.146 0.618 -0.106

9 PARA_MN -0.272 0.165 -0.783 -0.099

10 PAFRAC 0.986 -0.146 0.701 -0.201

11 ENN_MN -0.352 0.306 -0.35 -0.806

12 CLUMPY -0.986 0.146 -0.543 0.551

13 IJI -0.349 -0.581 -0.013 0.942

14 AI -0.896 -0.391 -0.558 0.633

15 NLSI 0.986 -0.146 -0.291 -0.598

Variance accounted for each time period

Dimension
1973 2016

Total (Eigenvalue) % of Variance Total (Eigenvalue) % of Variance

1 7.979 53.192 5.7 38.07

2 3.196 21.306 4.7 31.07

Total 11.175 74.498 10.4 69.14

Table 3: Component loadings of CATPCA among two dimensions and variance accounted.

Figure 7: Spatial patterns of (a)1973 and (b) 2016.

Conclusion
Analysis of LULC dynamics using temporal RS data aided in

understanding causes of changes, focussing on conservation and
restoration of ecosystems. The LULC analyses of Uttara Kannada
during 1973 to 2016 show significant variation during the last four
decades as evergreen forests have declined from 67.73% (1973) to
29.5% (2016) and area under human habitations and paved surfaces
have reached 4.97% (2016). Decline in forest cover in Costal taluks is
due to housing, agriculture, transportation, etc. Sirsi, Siddapur, Haliyal,
Yellapur and Mundgod regions have experienced changes in forest
cover due to encroachments by disturbing local ecology. Market based
economy has motivated Honnavara, Siddapur regions conversion of
land for commercial crops. Landscape metrics helped in
understanding spatial patterns of landscape, similar configurations and
variation across the forested area of Uttara Kannada for devising
appropriate effective management and decision making towards the
sustainable development. Spatial metrics depicts the whole landscape
in 1973 represents a simple spatial pattern except Mundgod and Sirsi.
In 2016, due to continued changes in the structure by deforestation,
the three agro climate regions are represented by dissimilar patterns.
The costal taluks are more fragmented towards west (higher NP) and
plain taluks expressing higher nearest neighbor distance (ENN_MN)
of forest patches as shown by due to intermediate by exotic plantations.
Edge effects have a rapidly increasing impact on Sahyadri Interior
taluks forest dynamics in lower elevations and Sirsi taluk has higher
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NP due to more intermediate patches of non-forest types. CATPCA
along with spatial metric clustering information visually demonstrated
the ability of these metrics to express the variation of patterns at the
landscape scale. Variation in landscape spatial heterogeneity/similarity
has provided regional level picture of the district, which can be used to
frame conservation policies to protect social and ecological
sustainability of ecosystems.
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