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Abstract

Land cover mapping relates to identifying the types of features present on the surface of
the earth. It deals with discerning the extent of land cover features namely vegetation,
geologic, urban infrastructure, water, bare soil or others. Variations in land cover and
associated physical characteristics do influence weather and climate of our earth and
hence, it is considered an essential element for modelling and understanding the earth as
a system for many planning and management activities. Thus, understanding of land
cover dynamics plays an important role at the local/regional as well as global level.
Identifying, delineating and mapping land cover on temporal scale provides an
opportunity to monitor the changes, which is important for planning activities and
sustainable management of the natural resources.

Land cover mapping can be done most effectively through space borne remote sensors of
various spatial, spectral and tempora resolutions. Due to the spectral resolution
limitations of conventional multispectral imageries, hyperspectral sensors, which collect
numerous bands in precisely defined spectral regions were developed. Hyperspectral
images have ample spectral information to identify and distinguish spectrally unique
materials that alow more accurate and detailed information extraction. These imageries
are classified into different land cover categories using various algorithms. The genesis
and the underlying principle behind each of these algorithms are different and essentially
produce different output maps. This paper discusses the various efforts made for land
cover and land use mapping with an emphasis on the hard classification agorithms for
hyperspectral image processing at a regiona scale. Neural network algorithm for
classifying MODIS data has been implemented for Kolar district, Karnataka. The
accuracy assessment is done using ground truth data and classified multispectral map on
apixe to pixel analysis.
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I ntroduction

Land cover is the discernible vegetation, geologic, hydrologic or anthropogenic features
on the planet's land surface. Broadly speaking, land cover describes the physical state of
the earth’s surface and immediate surface in terms of the natural environment (such as
vegetation, soils, groundwater, etc.) and the man-made structures (e.g. buildings). These
land cover features can be classified using the data of different spatial, spectra and
temporal resolutions acquired through remote sensors mounted on space borne platforms.
Land cover changes induced by human play a maor role in patterns of the climate and
biogeochemistry at aregiona scale[1].

Land cover mapping using high spectral resolution has several advantages, because it
aids in numerous mapping applications such as soil types, species discrimination, mineral
mapping, etc. Hyperspectral data processing poses both challenges and opportunities for
land cover mapping. Land cover mapping can be performed using various algorithms by
processing the remotely sensed data into different themes or classes.

The terms land use and land cover are often used in natural resources management,
meaning types or classes of geographical determinable areas. Land cover provides the
ground cover information for baseline thematic maps. In contrast, land use refers to the
various applications and the context of its use. This involves both the manner in which
the biophysical attributes of the land are manipulated and the intent underlying that
manipulation (the purpose for which the land has been used). Identifying, delineating and
mapping land cover on temporal scale provides an opportunity to monitor the changes,
required for sustainable management of natural resources. .

Recent exercise on global LULC (Land Use Land Cover) for vegetation mapping was the
use of MODIS data as one of the most critical global data sets. The classification
included 17 categories of land cover following the International Geosphere-Biosphere
Program (IGBP) scheme. The set of cover types includes eleven categories of natural
vegetation covers broken down by life form; three classes of developed and mosaic lands,
and three classes of non-vegetated lands [2].

In India, land use and land cover (LULC), an important study from national perspective
on annual basis using data from the latest Indian Remote Sensing Satellite — Resourcesat
has been initiated by ISRO (Indian Space Research Organisation) and NRSA (National
Remote Sensing Agency), Department of Space in coordination with several RRSSCs
(Regional Remote Sensing Service Centres). Spatial accounting and monitoring of land
use and land cover systems was carried out on a national level on 1:250,000 scale using
multi-temporal IRS (Indian Remote Sensing Satellites) AWIFS (Advanced Wide Field
Sensor) datasets to provide on an annual basis, the net sown area for different cropping
seasons and the integrated LULC map. The AWIFS data covered Kharif (August —
October), Rabi (January — March) and Zaid (April — May) seasons to address spatial and
temporal variability in cropping pattern and other land cover classes. Decision tree
classifier method was adopted to account the variability of temporal datasets and bring



out reliable classification outputs. Legacy datasets on forest cover, type, wastelands and
limited ground truth were used as inputs for classification and accuracy assessment [2].

The most significant recent breakthrough in remote sensing has been the development of
hyperspectral sensors. The ‘Hyper’ in hyperspectral means ‘too many’ and refers to the
large number of measured wavelength bands. Hyperspectral images are spectrally over
determined, which means that they provide ample spectral information to identify and
distinguish spectrally unique materials. Hyperspectral imagery provides the potential for
more accurate and detailed information extraction than is possible with any other type of
conventional remotely sensed data.

Moderate Resolution Imaging Spectroradiometer (MODIS) is a mgjor instrument on the
Earth Observing System EOS-AM1 and EOS-PM1 (termed AQUA) missions [3]. The
‘heritage’ of the MODIS comes from several space-borne instruments. These include the
Advanced Very High Resolution Radiometer (AVHRR), the High Resolution Infrared
Sounder (HIRS) unit on the Nationa Oceanic and Atmospheric Administration’s
(NOAA) Polar Orhiting Operational Environmental Satellites (POES), the Nimbus-7
Coastal Zone Colour Scanner (CZCS), and the Landsat Thematic Mapper (TM). MODIS
is able to continue and extend the databases acquired over many years by the AVHRR, in
particular, and the CZCS/Sea Star-Sea WIiFS series.

Hard Classification Algorithms

Gaussian Maximum Likelihood Classifier (GMLC): The maximum likelihood
classifier quantitatively evaluates both the variance and covariance of the category
spectral response patterns when classifying an unknown pixel. It is assumed that the
distribution of the cloud of points forming the category training data is Gaussian
(normally distributed). Here, the distribution of a category response pattern can be
completely described by the mean vector and the covariance matrix. The probability
density functions are used to classify an unidentified pixel by computing the probability
of the pixel value belonging to each category. After evaluating the probability in each
category, the pixel is assigned to the most likely class (highest probability value) or can
be labelled as ‘unknown’ if the probability values are all below a threshold set by the
analyst [4].

Spectral Angle Mapper (SAM): In N dimensional multi-(or hyper-) spectral space a pixel
vector X has both magnitude (length) and an angle measured with respect to the axes that
defines the coordinate system of the space [5]. In the Spectra Angle Mapper (SAM)
technique for identifying pixel spectra only the angular information is used. SAM is
based on the idea that an observed reflectance spectrum can be considered as a vector in a
multidimensional space, where the number of dimensions equals the number of spectral
bands. If the overall illumination increases or decreases (due to the presence of a mix of
sunlight and shadows), the length of this vector will increase or decrease, but its angular
orientation will remain constant. Smaller angles represent closer matches to the reference
spectrum. If this angle is smaller than a given tolerance level, the spectra are considered



to match even if one spectrum is much brighter than the other (farther from the origin)
overal [4]. Pixels further away than the specified maximum angle threshold are not
classified.

Neural Network: To overcome difficulties in conventional digital classification that uses
the spectral characteristics of the pixel as the sole parameter in deciding to which class a
pixel belongs to, new approaches such as Neura Networks (NN) are being used. Fully
trained, neural networks can perform image classification relatively rapidly, athough the
training process itself can be quite time consuming. NN systems are ‘ self-training’ in that
they adaptively construct linkages between a given pattern of input data and particular
outputs. A NN consists of a set of three or more layers, each made up of multiple nodes.
Typicaly, these might include spectral bands from a remotely sensed image, textural
features or other intermediate products derived from such images, or ancillary data
describing the region to be analysed. The nodes in the output layer represent the range of
possible output categories to be produced by the network [4]. Between the input and
output layers are one or more hidden layers. These consist of multiple nodes, each linked
to many nodes in the preceding layer and to many nodes in the following layer. These
linkages between nodes are represented by weights, which guide the flow of information
through the network. The number of hidden layers used in a neural network is arbitrary.
An increase in the number of hidden layers permits the network to be used for more
complex problems but reduces the network’s ability to generalise and increases the time
required for training. Applying a NN to image classification makes use of an iterative
training procedure in which the network is provided with matching sets of input and
output data. Each set of input data represents an example of a pattern to be learned, and
each corresponding set of output data represents the desired output that should be
produced in response to the input. During the training process the network autonomously
modifies the weights on the linkages between each pair of nodes in such a way as to
reduce the discrepancy between the desired output and the actual output [4].

Decision Tree Approach: Decision tree approach is a non-parametric classifier and an
example of machine learning algorithm. It involves a recursive partitioning of the feature
space, based on a set of rules that are learned by an analysis of the training set. A tree
structure is developed where at each branching a specific decision rule is implemented,
which may involve one or more combinations of the attribute inputs. A new input vector
then ‘travels from the root node down through successive branches until it is placed in a
specific class. The thresholds used for each class decision are chosen using minimum
entropy or minimum error measures. It is based on using the minimum number of bits to
describe each decision at a node in the tree based on the frequency of each class at the
node. With minimum entropy, the stopping criterion is based on the amount of
information gained by arule (the gain ratio) [2].

Clustering: Clustering techniques fall into a group of undirected data mining tools [6].
The goal of clustering is to discover structure in the data as a whole. There is no target
variable to be predicted and thus no distinction is being made between independent and
dependent variables. Clustering partitions the image data into a number of spectral
classes, and then labels all pixels of interest as belonging to one of those spectral classes,
although the labels are purely nominal (e.g. A, B, C, ...., or classl, class 2, ....... ) and are



as yet unrelated to ground cover types [5]. The K-means algorithm is a ssmple, iterative
procedure, in which a crucia concept is the one of ‘centroid’. Centroid is an artificial
point in the space of records which represents an average location of the particular
cluster. The coordinates of this point are averages of attribute values of all examples that
belong to the cluster.

Data and Study Area

Band 1 to band 36 MODIS data “MOD 02 Level-1B Calibrated Geolocation Data Set”
were downloaded from EOS Data Gateway [7]. This Level 1B data set contains
calibrated and geolocated at-aperture radiances for 36 bands generated from MODIS
Level 1A sensor counts (MOD 01). This data product [8], contains the radiometrically
corrected, fully calibrated and geolocated radiances at-aperture for al spectral bands at
1km resolution [9]. Band 1 to band 7 MODIS product known as “MOD 09 Surface
Reflectance 8-day L3 global” at 250 (band 1 and band 2) and 500m (band 1 to band 7)
were also downloaded. The MOD 09 product is computed from the MODIS Level 1B
land bands 1, 2, 3, 4, 5, 6, and 7 (centred at 648 nm, 858 nm, 470 nm, 555 nm, 1240 nm,
1640 nm, and 2130 nm, respectively) which is an estimate of the surface spectra
reflectance for each band as it would have been measured at ground level if there were no
atmospheric scattering or absorption [10]. These data are broken into granules
approximately 5-min long and stored in Hierarchical Data Format (HDF).

The Indian Remote Sensing Satellites IRS - 1C/1D LISS 3 (Linear Imaging Self-
Scanning Sensor 3) MSS (Multi Spectral Scanner) data having bands in Green, Red and
Near-infrared part of the electromagnetic spectrum with a spatial resolution of 23.5 m
procured from NRSA, Hyderabad was used as the high resolution image.

Kolar district in Karnataka State, India, chosen for this study is located in the southern
plain regions (semi arid agro-climatic zone) extending over an area of 8238.47 sq. km.
between 77°21' to 78°35' E and 12°46’ to 13°58' N (Figure 1).

Kolar is divided into 11 taluks (or administrative boundaries/blocks/units) for
administration purposes (taluks are Bagepalli, Bangarpet, Chikballapur, Chintamani,
Gudibanda, Gauribidanur, Kolar, Malur, Mulbagal, Sidlaghatta and Srinivaspur). The
distribution of rainfall is during southwest and northeast monsoon seasons. The average
population density of the district is about 2.09 persons/hectare. The district is devoid of
significant perennial surface water resources. The groundwater potential is also assessed
to be limited. The terrain has a high runoff due to less vegetation cover contributing to
erosion of top productive soil layer leading to poor crop yield. Out of about 280 thousand
hectares of land under cultivation, 35% is under well and tank irrigation [11].
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Figure 1. Study area—Kolar district, Karnataka State, India

M ethodology

The methodology of the study involved -

1. Creation of base layers like district boundary, district with taluk and village
boundaries, road network, drainage network, contours, mapping of waterbodies,
etc. from the SOI topographical maps of scale 1:250000 and 1:50000.

2. Extraction of LISS-3 bands, identification of ground control points (GCP's) and
geo-correction of the bands through resampling followed by cropping and
mosaicing of data corresponding to the study area.

3. Generation of FCC (False Colour Composite) and identification of training sites
on FCC.

4. Collection of attribute information from field corresponding to the chosen training
sites using GPS.

5. Supervised Classification of LISS-3 MSS data.

6. Identification of ground control points (GCP's) and geo-correction of MODIS
(MOD 09 Surface Reflectance 8-day L3 global Products) band 1 and 2 (spatial
resolution 250 m) and bands 3 to 7 (spatial resolution 500 m) and MODIS L1B




product (MOD 02 Level-1B Calibrated Geolocation Data Set) with 36 spectral
bands (of spatial resolution 1 km)

7. Resampling of MODIS bands 3 to 7 (MOD 09 Surface Reflectance 8-day L3
global Products) and MODIS bands 1 to 36 (MOD 02 Level-1B Calibrated
Geolocation Data Set) to 250 m using nearest neighbourhood technique for easy
processing, overlaying and comparison and for analysis consistency.

8. Reprojection of al MODIS bands from Sinusoidal to lat-long projection with
Evrst 1956 as the datum, followed by masking of the study area.

9. Derivation of Principa Component Analysis (PCA) on the MODIS 36 bands.

10. Derivation of Minimum Noise Fraction (MNF) on the MODIS 36 bands.

11. Classification of MODIS data using Neural Network.

12. Accuracy Assessment of the classified maps.

Results and Discussion

Land Cover Analysis using LISS-3 MSS. NDVI was generated using LISS-3
data for land cover analysis ranging from 0.71 to -0.50. NDVI gave land cover
(vegetation/green versus non-vegetation/non-green) information showing that 46.03% of
the area has vegetation (agriculture, forest and plantations /orchards) and the remaining
53.98 % has non-vegetation (built up land, waste/barren rock/stony and water bodies).

Land Cover Analysisusing MODI S data: Red (Band 1) and near-infrared band
(Band 2) of the MODIS sensor at 250 m spatial resolution were used to compute NDVI,
ranging from 0.35 to -0.54, indicating that 47.35% of the area under vegetation and the
remaining 52.65 % under non-vegetation.

Classification of high resolution LISS-3 MSS data: The class spectral
characteristics for the six land cover classes for LISS-3 MSS bands 2, 3 and 4 were
generated to see the inter class seprability. The Transformed Divergence matrix also
helped in distinguishing different classes indicating that the ROI pairs have a very good
separability. Ground truth obtained from field and other ancillary data were used for the
LISS-3 MSS classification. This was done in two steps: unsupervised classification and
supervised classification.

False colour composite (FCC) was generated from the LISS-3 MSS data The
heterogeneous patches (training polygons) were chosen for the field data collection.
Supervised classification using GMLC was performed with the ground truth data. Care
was taken to see that these training sets are uniformly distributed representing/covering
the study area. The supervised classified image shown in figure 2 (A) was validated by
field visit and by overlaying the training sets used for classification. The land cover
statistics are listed in Table 1.

Classification of MODI S data: The class spectral characteristics for the six classes
defined in this study across the first seven bands, PCs and MNF components of the 36
bands of the MODIS sensor were determined showing their good separablity. The



Transformed Divergence Matrices were also computed which showed a similar pattern
and helped in determining the separability among the various classes.

The MODIS data (bands 1 to 7), the first five PCs and the first five MNF components
were classified using Neural Network as shown in figure 2 (B), (C), and (D). The process
of training the neurons was time consuming. Although NN is considered to be one of the
most robust techniques for classification of remotely sensed data, yet, controlling the
training process in NN was difficult. The training process for training the neurons
converged at 1000 iterations. The number of hidden layer was kept at 1 and the output
activation function was kept at 0.001. The output activation function was increased in
steps to see the variations in the classification. The training momentum was initially 0
and was increased gradually. The RMS error at the completion of the process was 0.09,
0.39 and 0.29 for the three different inputs. Table 1 shows the land cover statistics for the
classification results.

Table 1: Percentage wise distribution of classes obtained from L1SS-3 MSS (using
MLC) and MODIS classification on Surface Reflectance Bands (1 to 7), Principal
Components and MNF components of MODI S bands 1 to 36 using NN.

Classes LISS3MSS | MODIS Surface MODIS MODIS

Reflectance bands | derived PCs (36 | derived MNF
(Bands1to7) bands) Components
(36 bands)

Agriculture (%) 19.03 21.88 21.49 19.38

Built up (Urban/Rural) 17.13 26.44 15.78 17.55

(%)

Evergreen/ Semi- 11.41 7.68 12.04 11.32

Evergreen Forest (%)

Plantation/ orchards (%) 10.96 19.31 09.45 10.84

Waste land/Barren Rock / 40.39 24.38 40.33 39.97

Stony waste (%)

Water bodies (%) 1.08 00.31 0.91 00.94

Total (%) 100.00 100.00 100.00 100.00
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Accur acy Assessment

Accuracy Assessment of L1SS-3 classified map: The accuracy assessment was
done with the collection of training sites data for the entire Chikballapur taluk The
producer’s, user’s accuracy and overall accuracy corresponding to the various categories
were computed, along with the error matrices for supervised and unsupervised classified
MSS data of LISS-3, which is summarised in Table 2. The LISS-3 supervised
classification accuracy assessment gave a kappa (k) value of 0.95 indicating that an
observed classification isin agreement to the order of 95 percent.

Table 2: Producer’s accuracy, user’s accuracy and overall accuracy of land cover
classification using L1SS-3 MSS data for Chikballapur Taluk.

Supervised Classification Unsupervised Classification

Category Producer’'s | User’s Overall Producer’s | User’'s Overall
Accuracy Accuracy | accuracy | Accuracy Accuracy | Accuracy
(%) (%) (%) (%) (%) (%)

Agriculture 94.21 84.54 94.47 83.39

Built up 96.47 83.11 95.63 89.68 80.30 90.22

Forest 94.73 96.20 86.77 89.71

Plantation 92.27 91.73 84.44 90.10

Waste land 97.49 89.88 93.03 93.37

Water 96.13 98.33 92.91 94.89

Accuracy Assessment of MODI S classified M aps

Accuracy Assessment using Error matrix - User's, Producer’'s and Overall accuracy
assessment of the MODIS classified maps (using hard classifier) was done for
Chikballapur taluk with the ground truth data and the results are listed in Table 3, 4 and
5.

Table 3: User’s Accuracy of classified MODI S Data of Chikballapur taluk.

Algorithms Agriculture | Builtup | Forest Plantation | Waste land | Water bodies
NN (B1 to B7) 94.00 80.80 | 94.65 59.40 93.87 45.55
NN (PCA) 97.33 95.18 | 67.67 95.38 74.07 48.00
NN (MNF) 93.89 94.46 | 89.13 85.60 74.22 59.40
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Table4: Producer’s Accuracy of classified MODI S Data of Chikballapur taluk.

Algorithms Agriculture | Built up Forest Plantation Waste land Water bodies
NN (B1to B7) 56.73 99.00 73.07 96.60 89.53 68.56
NN (PCA) 57.55 93.00 94.00 93.00 93.00 73.51
NN (MNF) 69.99 91.89 87.24 99.00 95.00 56.93

Table5: Overall Accuracy of classified MODI S Data of Chikballapur taluk.

Techniques Overall Accuracy
NN on MODIS Surface reflectance bands (B1 to B7) 68.88
NN on MODIS derived PCs (36 bands) 71.02
NN on MODIS derived MNF Components (36 bands) | 86.11

Accuracy Assessment of MODIS classified maps was also performed at two spatial
scales — at the administrative boundary level (Taluk) and at the pixel level.

Comparison based on land cover class percentage area - Land cover statistics were
computed for all taluks pertaining to each classification algorithm at the taluk level.

Pixel to pixel analysiswith L1SS-3 M SS classified image - MODIS classified data were
also compared with LISS-3 MSS classified data on a pixel by pixel basis for accuracy
assessment of pure (homogenous) pixels. One pixel of MODIS spatially corresponds to
121 pixels (that is approximately equal to 258.5 m) of LISS-3. The error matrix was
generated with user’s accuracy, producer’s accuracy and overall accuracy for the taluk
andislisted in Table 6, 7 and 8.

Table 6: User’s Accuracy obtained from pixel to pixel analysis with L1SS-3 image
comparison for Chikballapur taluk.

Algorithms Agriculture Built up | Forest Plantation | Wasteland Water bodies
NN (B1to B7) 37 17 59 44 87 29
NN (PCA) 20 45 61 69 81 56
NN (MNF) 41 55 61 75 81 65

12




Table 7: Producer’s Accuracy obtained from pixel to pixel analysis with L1SS-3
image comparison for Chikballapur taluk.

Algorithms Agriculture Built up Forest Plantation | Wasteland Water bodies
NN (B1to B7) 46 65 19 41 60 45
NN (PCA) 61 29 38 69 78 45
NN (MNF) 59 41 55 76 83 65

Table 8: Overall Accuracy of classified MODIS Data of Chikballapur taluk from
pixel to pixel analysiswith L1SS-3 image comparison.

Technique Overall Accuracy
NN on MODIS Surface reflectance bands (B1 to B7) 51.34
NN on MODIS derived PCs (36 bands) 63.69
NN on MODIS derived MNF Components (36 bands) | 69.87

The accuracy assessment showed that Neural Network classification on MNF
components of MOFDIS bands 1 to 36 had highest overall accuracy followed by NN on
PC'sand NN on MODIS bands 1 to 7.

Conclusions

This paper gives an overview of the land cover mapping efforts and highlights the various
hard classification algorithms being used for hyperspectral image processing. The
experiment was conducted on MODIS 36 spectral bands with Neural Network
classification technique. The results obtained from accuracy assessment showed that NN
on Minimum Noise Fraction components was good for land cover mapping at regional
scale.
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