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Abstract 

 

Many regional environmental problems are the consequence of anthropogenic activities 

involving land cover changes. Temporal land cover data with social aspects are critical in 

tracing relationships of cause and effect on variables of interest with the effects of context on 

behaviour or with the process of human environment interaction and are also useful for 

governance of urbanising cities. Many cities are now undergoing redevelopment for economic 

purposes with new roads, infrastructure improvements, etc. This phenomenona is very rapid in 

India with urban population growing at around 2.3 percent per annum. This dramatic increase 

in urbanisation has raised the necessity to understand the dynamics of urban growth process for 

planning of natural resources. Cellular automata, an artificial intelligence technique based on 

pixels, states, neighbourhood and transition rules, is being implemented to model the urban 

growth process due to its ability to fit such complex spatial nature using simple and effective 

rules. The possibility of using genetic algorithms for automatic calibration of the model through 

proper design of their parameters, including objective function, initial population, selection, 

crossover and mutation has also been explored. The techniques are tested for Bangalore city, 

India by modeling the urban growth using remote sensing data of various resolutions.  
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1. Introduction  

 

Urban growth modeling is getting more attention as an emerging research area in many 

disciplines. Urbanisation is a form of metropolitan growth that is a response to often bewildering 

sets of economic, social, and political forces and to the physical geography of an area. This 

comes as a result of the recent dramatic increase in urban population that increases the pressure 



on the infrastructure services. Many cities are now undergoing redevelopment for economic 

purposes with new roads, infrastructure improvements, etc. This phenomenona is very rapid in 

India with urban population growing at around 2.3 percent per annum (World Urbanization 

Prospects, 2005). An increased urban population and growth in urban areas is irreversible with 

population growth and migration. This dramatic increase in urbanisation has raised the necessity 

to understand the dynamics of urban growth process for planning of natural resources. It also 

raises the necessity to understand the dynamics of urban growth process through “growth 

models” for sustainable distribution of usable resources.  

 

Among the developed growth models, cellular automata (CA), an artificial intelligence technique 

based urban growth models have better performance in simulating urban development than 

conventional mathematical models (Batty and Xie, 1994). CA simplifies the simulation of 

complex systems (Waldrop, 1992). Its aptness in urban modelling is due to the fact that the 

process of urban spread is entirely local in nature (Clarke and Gaydos, 1998). CA is based on 

pixels, states, neighbourhood and transition rules, and is being implemented to model the urban 

growth process due to its ability to fit complex spatial nature using simple and effective rules. 

Development of CA model involves rule definition and calibration to produce results consistent 

with historical data, and future prediction with the same rules (Clarke et al., 1997). Many CA-

based urban growth models are reported in literatures including the model by White and Engelen 

(1992; 1993) that involves reduction of space into square grids. They implement the defined 

transition rules in recursive form to match the spatial pattern. One of the earliest and most well-

known models is CA-based “SLEUTH” model that has four major types of data: land cover, 

slope, transportation, and protected lands (Clarke’s et al., 1997). This is rooted in the work of 

von Neumann (1966), Hagerstrand (1967), Tobler (1979) and Wolfram (1994). A set of initial 

conditions in SLEUTH is defined by ‘seed’ cells which are determined by locating and dating 

the extent of various settlements identified from historical maps, atlases, and other sources. 

These seed cells represent the initial distribution of urban areas. A set of complex behaviour 

rules are developed that involves selecting a location randomly, investigating the spatial 

properties of the neighboring cells, and urbanising the cell based on a set of probabilities. 

 



Despite these achievements in CA urban growth modeling, the selection of CA transition rules 

remains a research topic. Most of the CA models are usually designed based on individual 

preference and application requirements with transition rules being defined in an ad hoc manner 

(Li and Yeh, 2003). Furthermore, most of the developed CA models need intensive computation 

to select the best parameter values for accurate modeling. This motivates development and 

implementation of an effective CA-based urban growth model that is easy to calibrate and takes 

into account the spatial and temporal dynamics of urban growth simultaneously. The objectives 

of this study are:  

(i) To develop and implement an effective CA-based urban growth model to simulate the 

growth as a function of local neighbourhood structure of the input data. 

(ii) To develop a calibration algorithm that takes into consideration spatial and temporal 

dynamics of urban growth.   

 

Spatially, the model is calibrated locally to take into account the effect of site specific features 

while the temporal calibration is set up to adapt the model to the changes over growth pattern 

with time. Calibration provides the optimal values for the transition rules to achieve accurate 

urban growth modeling. The input to the urban growth model consists of two types of data:  

(i) classified images of 1973, 1992 and 2006 where each pixel represents one of the four 

land use classes – urban, vegetation, water and others.  

(ii) population density maps being represented by pixels in a raster format for the year 

1973 and 1992. 

 

CA generates transition rules for each pixel based on the current state of the pixel’s category (in 

terms of land use class) and population density value of that pixel together, to decide the next 

state of the pixel after a time epoch, i.e. change in land use from one class to another from 1973 

to 1992 and 1992 to 2006. The model is tested for Bangalore city, India by modeling the growth 

using remote sensing data of various spatial, spectral and temporal resolutions. Later, towards the 

end of this communication, genetic algorithm (GA) is introduced as a heuristic optimisation 

technique for selecting optimal model parameters. The possibility of using GA for automatic 

calibration of the model through proper design of their parameters, including objective function, 



initial population, selection, crossover and mutation has been explored. Here, a set of strings are 

used as initial population over which GA runs till convergence.   

 

The paper is organized as follows: section 2 briefs the study area, followed by data preparation 

details in section 3 – classification of remote sensing data of three time periods (1973, 1992 and 

2006) and generation of population density maps corresponding to the year 1973 and 1992. 

Section 4 introduces CA; section 5 presents the simulated results from the CA model; section 6 

deals with implementation of GA to model urban growth; section 7 discusses the results of 

modeling the urbanisation process and its relation to public policy followed by concluding 

remarks in section 8. 

  

2. Study Area 

 

Bangalore city is the principal administrative, cultural, commercial, industrial, and knowledge 

capital of the state of Karnataka. The administrative jurisdiction was widened in 2006 by 

merging the existing area of Bangalore city spatial limits with 8 neighbouring Urban Local 

Bodies (ULBs) and 111 Villages of Bangalore Urban District to form Greater Bangalore. 

Bangalore has spatially grown more than ten times since 1949 from 69 square kilometers to 741 

square kilometers in 2006. Now, Bangalore (figure 1) is the fifth largest metropolis in India 

currently with a population of about 7 million (Ramachandra and Kumar, 2008). 

 



 

Figure 1: Study Area: Bangalore city, Greater Bangalore. 

 

Bangalore city is composed of 100 wards. For our analysis, the city was divided into 8 zones 

[North (N), Northeast (NE), East (E), Southeast (SE), South (S), Southwest (SW), West (W), and 

Northwest (NW)] with their origin from the ‘city centre’ as shown in figure 1.  

 

3. Data Preparation 

 

This section describes the input data processing scheme. The two types of input data are: 

(i)  classified images of 1973, 1992 and 2006. 

(ii) population density maps for the year 1973 and 1992. 

  

Landsat Multispectral Scanner (MSS) of 1973 (in Blue (B), Green (G), Red (R) and Near 

Infrared (IR) bands of 79 m spatial resolution), Landsat Thematic Mapper (TM) of 1992 (B, G, R 

Near IR, Mid IR-1 and Mid IR-2 bands of 30 m spatial resolution), and IRS Linear Imaging Self 



Scanner (LISS) - III of 2006 (in G, R and NIR bands of 23.5 m spatial resolution) were used for 

the generation of land use maps. The data are stored in 8-bit format, i.e. each pixel can take any 

value from 0 to 255 (28 = 256 values). The values of these pixels in the image are called digital 

numbers which represents the reflectance represented by that pixel corresponding to the same 

geographical location on the ground. The 1973 image was of size 429 rows x 445 columns, size 

of 1992 image was 1130 x 1170 and the size of 2006 image was 1445 x 1496. The differences in 

the size of the images are due to variations in the spatial resolution of the pixels (79 m, 30 m, and 

23.5 m). These data were rectified and registered for systematic errors with the known ground 

control points that were identifiable in the image as well as Survey of India (SOI) topographical 

sheets of 1:50000 scale and projected to Polyconic system with Geographic Latitude-Longitude 

coordinate system and Evrest56 as the datum. All data were resampled to 23.5 m spatial 

resolution having 1445 rows x 1496 columns to fit each other spatially. Six classes of interest 

were identified from the false colour composite images: residential areas, commercial areas, 

roads, vegetation, water, and open land.  

 

Supervised classification of the image was performed using the Maximum Likelihood classifier 

(MLC). MLC has become popular and widespread in remote sensing because of its robustness 

(Strahler, 1980; Conese and Maselli, 1992; Ediriwickrema and Khorram, 1997; Zheng et al., 

2005). MLC assumes that each class in each band can be described by a normal distribution 

(Bayarsaikhan et al., 2009). For each land use class (residential areas, commercial areas, roads, 

vegetation, water, and open land) training samples were collected representing approximately 

10% of the study area. With these 10% known pixel labels from training data, the aim was to 

assign labels to all the remaining pixels in the image. 

 

If the training data (collected from the ground cover using handheld GPS - global positioning 

system) pertaining to land use classes contain n samples and the samples in each land use class 

are i.i.d (independent and identically distributed) random variables and further if we assume that 

the spectral classes for an image is represented by ωi, i=1,…, M, where M is the total number of 

classes, then probability density p(ωi|x) gives the likelihood that the pixel x belongs to class ωi 

where x is a column vector of the observed digital number (gray values) of the pixels. It 

describes the pixel as a point in multispectral space (d-dimensional space, where d is the number 



of remote sensing spectral bands). The maximum likelihood (ML) parameters are estimated from 

representative i.i.d samples. Classification is performed according to 

   ( | )  ( | ) for all .i i jif p p j i    x x x      (1) 

i.e., the pixel x belongs to class ωi if p(ωi|x) is the largest. The ML decision rule is based on a 

normalized (Gaussian) estimate of the probability density function of each class. The 

discriminant function for MLC is expressed as 

lig ( ) = ( | ) ( )i ip p x x         (2) 

 

where gli(x) stands for the discriminant function for ωi, p(ωi) is the prior probability of ωi, 

p(x|ωi) is the p.d.f. for pixel vector x conditioned on ωi  (Zheng et al., 2005). Pixel vector x is 

assigned to the class for which gli(x) is greatest. In an operational context, the logarithm form of 

(2) is used, and after the constants are eliminated, the discriminant function for ωi is stated as  

1
liG ( ) ( ) ( ) ln | | 2 ln ( )T

i i i i iM M P 
     x x x     (3) 

 

where i  is the variance-covariance matrix of ωi, Mi is the mean vector of ωi. A pixel is 

assigned to the class with the lowest liG ( )x  (Zheng et al., 2005; John and Xiuping, 1999, Duda, 

Hart and Stork, 2001). 
 

Residential, commercial and roads were grouped into a single class – ‘urban’. Final classified 

images had four land use classes – builtup, vegetation, water and open land (others). The 

classified images of 1973, 1992 and 2006 had overall accuracies of 72%, 75%, and 73%. 

Classification was done using the open source programs (i.gensig, i.class and i.maxlik) of 

Geographic Resources Analysis Support System (http://wgbis.ces.iisc.ernet.in/grass) as 

displayed in figure 2. The classified images were also verified with field visits and Google Earth 

image. The class statistics is given in table 1.  

 
 
 
 
 
 
 
 
 
 



Table 1: Greater Bangalore land use statistics  
 

Class  
Year  

Urban Vegetation Water Bodies Open land 

1973 Ha 5448 46639 2324 13903 
% 7.97 68.27 3.40 20.35 

1992 Ha 18650 31579 1790 16303 
% 27.30 46.22 2.60 23.86 

2006 Ha 29535 19696 1073 18017 
% 43.23 28.83 1.57 26.37 

 

 
 

Figure 2: Greater Bangalore in 1973, 1992 and 2006. 
 

Population density is used as the second input for the CA model algorithm. Population census 

maps for year 1971, 1991 and 2001 over Bangalore city were prepared from the census data. The 

population densities were computed for all 100 wards by dividing their populations by the ward 

areas. Figure 3 shows the ward map (left) in each direction and the density for each ward census 

(right) in 1971, 1991 and 2001. To model the population, the centroid (Xc, Yc) for each ward is 

calculated. 



 
Figure 3: Ward map in each direction and their population densities. Distances are 
expressed in kilometers and population densities are expressed in persons/sq. km. 

 
 
The Euclidean distance from each ward centroid to the city center (see figure 1) was computed. 

This process was repeated for all wards so that a table of population densities versus distance is 

prepared. Population densities for wards within specified distance from city center were 

averaged to reduce the variability in data. For example, an average population density for all 

wards within 0-1 km was calculated, then another average density is calculated for wards within 

1-2, 2-3, 3-4 km and so forth. Curves were fitted representing population density as a function of 

distance from the city centre as shown in figure 4. 

 



 
Figure 4: Direction wise population density for the year 1991 and 2001. 

 
 

The unknown model parameters were calculated for the year 1991 and 2001. These models were 

used to calculate the population density for each pixel in the imagery based on its distance from 

the city centre for the year 1991 and 2001. The changes in model parameters over the 10 years 

(from 1991 to 2001) were used to calculate the yearly rate of change in model parameters. The 

updated parameters that changed year by year were used to calculate the population density grids 

for the year 1973 and 1992 matching the same size of the input imagery (remote sensing 

classified maps - 1445 rows x 1496 columns). These grids were used as the second CA data input 

for the purpose of running the model over historical growth period. 

 

4. Cellular automata (CA) growth modeling 
 
This section discusses in detail the design of the CA urban growth modeling. The design phases 

include: transition rule definition, calibration method and evaluation strategy for the model. 

Calibration modules for accurate modeling over the historical satellite imagery to adapt the urban 

pattern. 



 4.1 CA algorithm design 
 
The design of the CA algorithm consists of defining the transition rules that control the urban 

growth, calibrating these rules, and evaluating the results for prediction purpose as shown in 

figure 5. Transition rules definition is the most important phase in CA model design since they 

translate the effect of input data on the urban process simulation. The CA algorithm design starts 

with defining the transition rules that drive the urban growth over time. They are designed as a 

function of land use effect on urban process, growth constraints and population density. The 

transition rules are defined over the 3 x 3 neighbourhood of a pixel to minimize the number of 

input variables to the model. The rules identify the neighbourhood needed for the tested cell to 

urbanise.  

 

 
Figure 5: Flowchart of CA algorithm design. 

 
The growth constraints should reflect the conservation strategy adopted in the study area for 

certain land uses. For example, conservation of certain species of natural resources can be taken 



into consideration through rules definition stage. Water resources protection through 

discouraging urban growth nearby these sites to preserve them over time is another example of 

constrained rules design. The future state of a pixel (Equation 4) at time (t+1) from starting time 

(t) depends on three factors: 

 

 Current state of the pixel 

 Current states of the neighbourhood pixels 

 Transition rules that drive the urban growth over time 

       
1( ) ( ( ), ( ), _ )t t tS f S S transition rules         ….. (Equation 4) 

 
where 
 

1( )tS   = test pixel future state at time epoch t+1 

( )tS   = test pixel current state at time epoch t 

( )tS   = neighbourhood pixels states’ set. 

 

4.2 CA Model calibration 

 
Calibration aims to define the best set of CA rules based on which the model runs to match as 

close as possible to the simulated results with the ground truth images. To achieve this purpose, 

two calibration schemes are introduced in this algorithm: spatial and temporal calibrations. In 

spatial calibration module, the CA transition rules at a given time t are modified spatially over 

the 2D grid space. This is done through tuning the values of each rule set on a directional basis to 

match the urban dynamics for each township with its site specific features. This allows the model 

to take the variability in the spatial urban growth pattern into account for realistic modeling. If 

the CA rules in a direction result in higher growth levels (overestimated), they are modified to 

reduce the urban growth in that direction. For the underestimation case, the rule values of the 

direction under consideration are tuned to increase the amount of urban growth to match the real 

one. So, the spatial calibration aims to find the best set of rule values that fit a given direction 

according to its geographical location. 

 



The oldest historical classified Landsat MSS image (of 1973) subset for Bangalore city (figure 6) 

from the Greater Bangalore image (figure 2) is used as input to the CA model over which the 

transition rules are applied to model the urban growth starting from this time epoch. Dividing the 

study area on a direction and further on a ward basis will take into consideration the effect of site 

specific features in each direction on the urban growth. The same CA transition rules are defined 

for each direction, however, with different rule values. CA transition rules () of the developed 

model were physically built over the input imagery and the rules used a 3 x 3 neighbourhood - 

,
t
i jA  in equation 5 to identify the test pixel future state, 1

,
t
i ja   in equation 6. 

 

 
Figure 5: Bangalore city in 1973, 1992 and 2006 used in the CA model for simulation 

(subset from Greater Bangalore classified image). 
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    ….. (Equation 5) 

 
1

, ,( )t t
i j i ja A           ….. (Equation 6) 

 

Transition rules () were designed to identify the required neighborhood urban level for a test 

pixel to urbanise. The following is a summary of such rules: 



 

1. IF test pixel is water, road OR urban (residential or commercial) THEN no change. 

2. IF test pixel is non-urban (vegetation OR open land) THEN it becomes urban if its: 

 Population density is equal or greater than threshold (Pi) AND neighbouring 

residential pixel count is equal or greater than threshold (Ri) 

 

where (R,C)i are integer numbers ranging from 0 to 8 (3 x 3 neighborhood) and Pi is a real 

number ranging from 0 to 1 (0.1 increment; population density values were normalized from 0 to 

1 for each direction in order to have effective CA rules calibration). The calibration (i.e., 

identifying best (R,P)i parameter values) of such rules was performed spatially on a ward level, 

Tw to fit the local urban dynamic features and over  time to consider the temporal urban changes 

in each direction, Tt in (7). 

 
Ø calibrated = f(Tw, Tt, )        ….. (Equation 7) 
 
 in the calibration formula represents the criteria selected to find the best rule set for certain  

ward spatial location Tw at given time epoch Tt. This criterion in our model represents the total 

modeling errors/mismatch between modeled output and reality that need to be minimised or best 

match.  in (8) was defined as a function of fitness F in (9) and total errors ∆E in (10) valuation 

measures. Fitness and total errors measure the compatibility in terms of urban count and pattern 

within each township with respect to reality, respectively (Al-Kheder, et al., 2007). 

 
( 100%)Abs F E            ….. (Equation 8) 

 
_ _

100%
_ _ _

Modele urban count
F

Ground truth urban count
       ….. (Equation 9) 

 
_ _

100%
_

Total error count
E

Total count
         ….. (Equation 10) 

 
Once the CA transition rules were identified and initialized for each direction, the model runs 

from 1973 till 1992. The 1992 image represents the first ground truth being used for calibration. 

For each ward, the modeling accuracy is calculated as a ratio between the simulated and real 

urban growth data. Over/underestimation concept is introduced to represent how comparable is 



the simulated result to the real one. This indicates how transition rules defined on a directional 

basis succeed in modeling the real amount of urban growth given the predefined conditions. 

Calibration in this work is meant to find the best set of rule values specific to each direction for 

realistic urban growth modeling. 

 

5. Results 

 

Simulation and prediction urban modeling results, as shown in table 2 and figure 6 shows a less 

close match to the reality from 1973 to 1992 in terms of urban count, however, the pattern 

matches in various directions to some extent. 

 

 
 

Figure 6: Classified image of 1973, real image and simulated image of 1992. Red colour 

indicates urban areas, yellow represents other classes (vegetation, water or open land) in 

real and simulated images.  



Table 2: Numerical evaluation results 
 
Direction 1973 Simulation / 1992 Prediction 1992 Simulation / 2006 Prediction 
 Fitness % Total Error, ∆E%  Fitness % Total Error, ∆E%  
North 52.58 32.39 79.82 101.71 30.82 32.53 
Northeast 66.43 30.48 64.05 101.66 35.44 37.10 
East 65.51 39.82 74.31 99.87 40.68 40.81 
Southeast 42.28 29.72 87.44 99.89 36.86 36.97 
South 46.39 33.33 86.93 105.36 29.18 34.54 
Southwest 58.55 16.71 58.16 100.58 23.24 23.81 
West 61.35 17.22 55.87 100.80 21.15 21.96 
Northwest 86.13 33.08 46.95 102.90 36.08 38.98 
Average 59.90 29.09 69.19 101.60 31.68 33.33 
 
The reason for the mismatch of the urban pixels is that the growth from 1973 to 1992 has 

happened haphazardly which has not been reflected and captured by the change in population 

density of various wards in different directions. In contrast the simulated images of 2006 (figure 

7) are more close to the real classified image in terms of the urban count. 

 
 
Figure 7: Real image and simulated image of 2006. Red colour indicates urban areas, 

yellow represents other classes (vegetation, water or open land).  



6. Implementation of Genetic Algorithm (GA) 

 

This section introduces briefly the on going study on using genetics algorithm (GA) to automate 

the spatial and temporal rule calibration. GA as a heuristic optimisation technique can work over 

the search space to find the most suitable solution. GA improves the efficiency of rule calibration 

to select the best set of rule values for accurate modeling. GA was first introduced by Holland 

(1975) as computer programs to mimic the evolutionary process in nature. GA manipulates a set 

of feasible solutions to find an optimal solution and is able to find the global optimum solution 

(S. Alkheder and J. Shan, 2006). The following steps describe the design of the proposed GA-

based transition rule calibration. 

 

Step 1: Initial GA population generation: In this step, 30 set of rule values were randomly 

generated as an initial population for each direction over which GA module would work. Each 

rule value set was coded as a binary string and a string was designed as a combination of the rule 

values. Two rules were identified to be optimised using GA. 

 

Rule 1: The number of neighbourhood urbanised (residential plus commercial) pixels, in 

the possible range of [0-8] integer values or in corresponding binary coding [0000 to 

1000]. 

 

Rule 2: The population density threshold, continuous values represent the cut-off 

population density at a pixel. This rule was scaled by multiplying its value by 10 in the 

range of [0-10] possible values or in binary coding [0000 to 1010].  

 

Step 2: Fitness function identification: Fitness function evaluates the performance of each 

string. The prediction accuracy was used as the fitness function.  

 

Step 3: GA selection operation: Rank selection procedure was used here. All the strings were 

ordered based on their fitness values in descending order and the string with highest fitness value 

was given rank 30 then the second one 29 till lowest fitness value with rank 1. Rank was divided 



by the summation of all the ranks and the probability of selection for each string in next 

generation was identified. 

 

Step 4: GA crossover and mutation parameters design: The crossover  

probability was selected to be 80%, 24 strings were selected for crossover, while the other 6 (the 

best 6 in terms of fitness values) were copied directly to the new generation (this process is 

known in GA as Elitism). Elitism can rapidly increase the performance of GA, because it 

prevents a loss of the best solution. A mutation rate of 1% was used. Once the crossover and 

mutation was done, the new generation of 30 strings was produced and the loop continued. This 

continued until the convergence criterion was met. The final output was the optimized CA rule 

values that model the temporal urban growth. The model is run over the western region of the 

city to project the growth in 2006 using 1992 data. The final result (figure 8) indicates good 

match (94 %) with the real 2006 classified image. 

 

 
Figure 8: GA-CA calibrated results for the year 2006. 

 
 

7. Discussion on results of modeling the urbanisation and its relation to 

public policy   

 

Prediction accuracy for each direction is used as a basis for rule calibration. Over/under 

estimation principle was implemented. If a set of rules for a particular direction produced 

underestimated results, this mean the growth rate is small and hence the rules are modified to 

increase the urban growth. For overestimation, the rules were modified to reduce the urban 

growth amount. The transition rules for a direction were repeatedly calibrated till the 



convergence criterion is met. The classified image provides the reference for calibration process. 

In table 2, the Fitness %, Total Error (∆E %) and  values for the year 1992 indicates a poor 

match of the simulated image with the real image (classified image), which is an indication of 

underestimation of urban pixels in various directions. However, the results for the 2006 

simulated image (table 2), indicates very good spatial prediction accuracy. The spatial variability 

between the various directions as compared to the real image is small. This indicates the effect of 

spatial calibration in matching each direction with its realistic urban growth pattern through 

calibrating its rules. It also helped in capturing finer details in the modeling process while 

calibrating the model over smaller spatial units to reduce modeling uncertainty. Visually, 

calibration on a directional basis succeeds in preserving the urban pattern over space and over 

time. Rule values’ results at the end of the calibration process indicate some similarity between 

growth in various directions such as the east, west and the northwest. These wards have almost 

the same growth rate and pattern because of similar infrastructure, facilities, and more open area 

for outer growth and urban sprawl. Most of these similar wards have ring roads or highways 

passing through them that allow linear urban growth happening along. 

 

The average fitness value for the 1992 image was ~ 60% and the total error was 29.09 with an 

approximate match of 71%. It is to be noted that for a highly accurate prediction, the total 

modeled urban count and ground truth urban count will be equal and therefore the fitness value 

(F) will be 1 or 100%. The total errors ∆E is the error of omission and commission. More the 

value of ∆E, more is the percentage of error count. There seems some mismatch between the 

urban pixels in 1992 that is without any visible pattern and therefore could not be assessed and 

captured by the change in population density contours and curve fits in various wards and 

different directions. Simulation and prediction urban modeling results, as shown in table 2 for the 

year 2006, show that the fitness results for prediction was close in terms of urban count (values 

close to 100%) between the modeled and real data with average fitness of 101.60 (little 

overestimate) and the average total error of 31.68% was achieved. This indicates an approximate 

match level of 69% on a pixel by pixel basis between modeling and reality. Therefore, higher the 

value of  in equation 8, higher is the modeling error. For the 2006 simulated image, the average 

 is 33.33 showing a more realistic result as compared to the actual urban growth pattern. This is 

a high accuracy level compared to the results shown in literature for the urban land spatial fit 



area that was only 28.15 to 44.6% (Yang and Lo, 2003). The close urban pattern match is also 

clear in figure 6 where the simulated images have urban distribution similar to those shown in 

their corresponding real images.    

 

The simulation results of urban growth should be accurate and should represent the actual local 

site specific patterns close to reality since urbanisation process is directly linked to society, 

infrastructure, level of services, etc. At this point of time, it would be appropriate to link people-

and-pixels in remotely sensed images. One rationale for doing so is that, it might result in better 

social science research in several ways – such as measuring the context of social phenomena and 

their effects while providing additional measures, making connections across levels of analysis, 

providing time-series data on socially relevant phenomena. On the other hand, social science has 

also to play a major role for remote sensing. Social science makes several kinds of scientific 

contributions to remote sensing such as validation and interpretation of remote observations, data 

confidentially and public use, etc. Together remote sensing mapping technology and social 

science can improve understanding of human-environment interactions to a great extent. They 

help in interpreting, modeling, predicting the dynamics of natural resources, and in 

understanding the human consequences of climate flux, etc.  

 

The change in land use such as agricultural fields, buildings, roads are often considered human 

artifacts and gets less importance and are therefore less interesting than the abstract variables that 

explain their appearance and transformations. Changing land use are regarded as manifestations 

of more important variables, such as government policies, land-tenure rules, distribution of 

wealth and power, market mechanisms, and social customs, none of which are directly reflected 

in the bands of the electromagnetic spectrum. The social utility argument posits that the 

interpretation of classified images obtained from remote sensing imageries becomes even more 

valuable to the extent that social scientist find useful, and that efforts should be made to identify 

and overcome the existing barriers to making this happen. From the perspective of social science, 

one important reason for using remotely sensed data is to gather information on the context that 

shapes social phenomena. The role of context has been central to the theories and empirical work 

of numerous statisticians, sociologists, economists, and anthropologists. In this context, remote 

sensing technology offers an additional source of contextual data for multilevel analyses. 



Another consideration involves the growing interdisciplinary community ranging from 

sustainable development, pollution prevention, global environmental change, to related issues of 

human-environment interaction who need to compare data on social and environmental 

phenomena at the same spatial and temporal scales (Liverman et al., 1998). Therefore, the 

consideration of spatial and temporal resolutions is very important.  

 

Another critical issue in linking people with pixels and image is the decision on where to 

gereference individuals or other social units. The approach adopted in this work aggregates 

social data to larger geographical units; assigning individuals to larger areas in which their 

environmental effects are more likely to be confined. It is necessary at this point of time, to 

socialise the pixel and pixelise the social in land use and land cover change. Mining the pixel 

involves seeking social meaning in imaginary – information and indicators relevant to such 

concerns as economic well-being or criticality, perhaps signaling the underlying processes that 

give rise to land use and land cover change. This meaning is often hidden deep within the 

analysis of the imagery and this depth may impede such investigation. A paucity of spatially 

explicit data has constrained spatial modeling of human behavior and social structures, especially 

beyond the field of geography and has fostered modeling approaches that abstract the essential 

spatial nature of the problem. As a result, either aggregate relationships are specified, or the 

spatial components in a model are reduced to unidimensional variables, such as the distance 

between economic activities in location model, the wage differential in a migration model, or the 

cost of access in a transportation model. The increased availability of spatially explicit data, both 

remotely sensed and other data, and GIS (Geographic Information System) has begun to change 

the situation. Advances are being made to link on-the-ground human actions and consequences 

to imagery (pixels) through models, or modeling to the pixel, as in modeling the determinants of 

the decision of individual land managers on the basis of utility maximisation, satisficing, or other 

theories of human behavior. The use of pixels may extend to explain the dynamics of many 

indicators such as energy demand and conservation, environmental area assessment, disaster 

energy response, forecasting urban expansion that can be visualized as concentric rings, sectors 

or multiple nuclei. 

 



The future interaction between societal studies and remote sensing depends on what kind of 

features can be detected and how often data can be obtained. Remote sensing technology may be 

used not only for monitoring change, but also for conducting surveillance. For example to count 

houses, to count the number of stories in each house, and detect changes in building structure. 

This may provide ability to check on building regulations and thus develop some new surrogates 

for social economic conditions. The key question is whether this type of information can be used 

to create more efficient urban environments and provide a more equitable distribution of 

resources and services? 

 

8. Conclusion 

 

This work explores the potential of implementing the cellular automata to model the historical 

urban growth over Bangalore city. The main goal is to design the model as a function of local 

neighbourhood structure to minimise the input data to the model. Satellite imagery represents the 

medium over which the model works. One special issue the model takes into account is the 

calibration process. Two modules were used namely, spatial and temporal calibration. Spatial 

calibration fits the model on a directional basis to its site specific feature while the temporal 

calibration adapts it to the urban growth dynamic change over time. This is a noticeable effect on 

producing a good spatial match between the real and simulated image data. On the other hand, 

GA is introduced to enhance the CA calibration process. GA makes the calibration process more 

efficient through manipulating a set of feasible solutions in the search space to find an optimal 

solution. This will reduce the search space for the optimal rules’ values on a directional basis. 

The above techniques are robust in predicting urban growth and visualizing them through pixels 

in images. Relating pixels in remote sensing data and people in society is important for studies 

on sustainable development, pollution prevention, global environmental change, and issues of 

human-environment interaction at different spatial and temporal scales. 
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