Technical Report No 112

Biosorption of Heavy Metals by Low cost Adsorbents

CONTENTS

1. INTRODUCTION

- 1.1. Distribution of water in the world
- 1.2. Types of aquatic ecosystem
 - 1.2.1. Freshwater Regions
 - 1.2.2. Marine Ecosystems
- 1.3. Threats to aquatic ecosystems
- 1.4. Metals and dyes in the Aquatic Ecosystems
- 1.5. Toxicological aspects of metals
- 1.6. Need for the removal of heavy metals
- 1.7. Conventional Methods for the treatment of metals
 - 1.7.1. Chemical Precipitation
 - 1.7.2. Chemical Reduction
 - 1.7.3. Xanthate process
 - 1.7.4. Solvent extraction
 - 1.7.5. Membrane Process
 - 1.7.6. Evaporators
 - 1.7.7. Cementation
 - 1.7.8. Ion exchange
 - 1.7.9. Electrodeposition
 - 1.7.10. Adsorption
- 1.8. Disadvantages of conventional methods for treatment of wastewater containing heavy metals
- 1.9. Biosorption

2. REVIEW OF LITERATURE

- 2.1. Biosorption of heavy metals by Microorganisms
- 2.2. Disadvantages of biosorption using microorganisms

- 2.3. Low cost adsorbents
 - 2.3.1. Low cost adsorbents for metal removal

3. RESEARCH OBJECTIVES

4. MATERIALS AND METHODS

- 4.1. Materials
- 4.2. Preparation of adsorbate solutions.
- 4.3. Determination of Carbon, Nitrogen and Sulphur in the four husks
- 4.4. Infrared spectroscopic analysis
- 4.5. Analysis of adsorbates
- 4.6. Batch mode adsorption studies
 - 4.6.1. Effect of agitation time
 - 4.6.2. Effect of adsorbent dosage
 - 4.6.3. pH effect
 - 4.6.4. Desorption studies

5. RESULTS

- 5.1. Characteristics of the adsorbent
- 5.2. Infrared spectroscopic studies
- 5.3. Batch mode adsorption studies
 - 5.3.1. Effect of agitation time
 - 5.3.2. Effect of adsorbent dosage
 - 5.3.3. Effect of pH
 - 5.3.4. Adsorption Isotherms
 - 5.3.5. Adsorption kinetics
 - 5.3.6. Desorption studies

6. DISCUSSION

- 6.1. Characteristics of the adsorbent
- 6.2. Infrared Spectroscopic Studies
- 6.3. Batch mode studies
 - 6.3.1. Effect of agitation time and adsorbate concentration on adsorption
 - 6.3.2. Effect of adsorbent dosage on adsorption
 - 6.3.3. Effect of pH on the adsorption of metal ions
 - 6.3.4. Adsorption isotherms
 - 6.3.5. Adsorption dynamics adsorption rate constant
 - 6.3.6. Desorption studies

6.4. Mechanism of adsorption

6.4.1. Metal adsorption

7. SUMMARY AND CONCLUSIONS

8. REFERENCES

LIST OF TABLES

Table	
No.	Title
1	General Distribution of Heavy metals in Particular Industrial Effluents
2	Performance characteristics of various heavy metal removal /recovery technologies
3	Biosorbent uptake of metals by Microbial Biomass
4	Reported adsorption capacities (mg/g) for tannin containing materials
5	Reported adsorption capacities (m/g) for chitosan
6	Reported adsorption capacities (mg/g) for zeolite
7	Reported adsorption capacities (mg/g) for clays
8	Reported adsorption capacities (mg/g) for peat moss
9	Adsorption capacities of industrial waste (mg/g)
10	Reported adsorption capacities (mg/g) for several miscellaneous sorbents
11	Percentage content of carbon, hydrogen and nitrogen in the four husks
12	Effect of agitation time and initial metal concentration on Chromium adsorption by BGH
13	Effect of agitation time and initial metal concentration on Chromium adsorption by TDH
14	Effect of agitation time and initial metal concentration on Chromium adsorption by CH
15	Effect of agitation time and initial metal concentration on Chromium adsorption by TH.
16	Effect of agitation time and initial metal concentration on Iron adsorption by BGH
17	Effect of agitation time and initial metal concentration on Iron adsorption by TDH
18	Effect of agitation time and initial metal concentration on Iron adsorption by CH

- 19 Effect of agitation time and initial metal concentration on Iron adsorption by TH
- 20 Effect of agitation time and initial metal concentration on Mercury adsorption by BGH
- 21 Effect of agitation time and initial metal concentration on Mercury adsorption by TDH
- Effect of agitation time and initial metal concentration on Mercury adsorption by CH
- Effect of agitation time and initial metal concentration on Mercury adsorption by TH
- Effect of agitation time and initial metal concentration on Nickel adsorption by BGH
- Effect of agitation time and initial metal concentration on Nickel adsorption by TDH
- 26 Effect of agitation time and initial metal concentration on Nickel adsorption by CH
- 27 Effect of agitation time and initial metal concentration on Nickel adsorption by TH
- Effect of pH and initial metal ion concentration on chromium adsorption by BGH
- Effect of pH and initial metal ion concentration on chromium adsorption by TDH
- 30 Effect of pH and initial metal ion concentration on chromium adsorption by CH
- Effect of pH and initial metal ion concentration on chromium adsorption by TH
- Effect of pH and initial metal ion concentration on Iron adsorption by BGH
- Effect of pH and initial metal ion concentration on Iron adsorption by TDH
- Effect of pH and initial metal ion concentration on Iron adsorption by CH
- Effect of pH and initial metal ion concentration on Iron adsorption by TH
- 36 Effect of pH and initial metal ion concentration on Mercury adsorption by BGH
- Effect of pH and initial metal ion concentration on Mercury adsorption by TDH
- Effect of pH and initial metal ion concentration on Mercury adsorption by CH
- Effect of pH and initial metal ion concentration on Mercury adsorption by TH
- 40 Effect of pH and initial metal ion concentration on Nickel

- adsorption by BGH
- 41 Effect of pH and initial metal ion concentration on Nickel adsorption by TDH
- 42 Effect of pH and initial metal ion concentration on Nickel adsorption by CH
- Effect of pH and initial metal ion concentration on Nickel adsorption by TH
- Sorption isotherm constants and coefficients of determination adsorption of metal ions for BGH
- Sorption isotherm constants and coefficients of determination for adsorption of metal ions by TDH
- Sorption isotherm constants and coefficients of determination for adsorption of metal ions TH
- 47 Sorption isotherm constants and coefficients of determination for adsorption of metal ions CH
- 48 Equilibrium parameter (RL) for adsorption of metals
- 49 Effect of initial chromium (VI) concentration on Lagergren rate constant by BGH
- 50 Effect of initial chromium (VI) concentration on Lagergren rate constant by CH
- 51 Effect of initial chromium (VI) concentration on Lagergren rate constant by TH
- 52 Effect of initial Iron (III) concentration on Lagergren rate constant by TDH
- Effect of initial Iron (III) concentration on Lagergren rate constant by CH
- Effect of initial Iron (III) concentration on Lagergren rate constant by TH
- 55 Effect of initial mercury (II) concentration on Lagergren rate constant by BGH
- 56 Effect of initial mercury (II) concentration on Lagergren rate constant by TDH
- 57 Effect of initial mercury (II) concentration on Lagergren rate constant by CH
- 58 Effect of initial mercury (II) concentration on Lagergren rate constant by TH
- 59 Effect of initial nickel (II) concentration on Lagergren rate constant by BGH
- Effect of initial nickel (II) concentration on Lagergren rate constant by TDH
- Effect of initial nickel (II) concentration on Lagergren rate constant by CH
- 62 Effect of initial nickel (II) concentration on Lagergren rate constant

	by TH
63	Comparison of adsorption capacity of Chromium (VI) with other
	adsorbents
64	Comparison of adsorption capacity of Iron (III) with other
	adsorbents
65	Comparison of adsorption capacity of Mercury (II) with other
	adsorbents
66	Comparison of adsorption capacity of Nickel (II) with other
	adsorbents
67	Type of Isotherm for various R _L

LIST OF FIGURES

Figure No.	Title
1	Biomagnification of metals in natural systems
2	Infra red spectra of BGH
3	Infra red spectra of TDH
4	Infra red spectra of CH
5	Infra red spectra of TH
6-9	Effect of agitation time on the Chromium biosorption by BGH, TDH, CH and TH
10-13	Effect of agitation time on the Iron biosorption by BGH, TDH, CH and TH
14-17	Effect of agitation time on the Mercury biosorption by BGH, TDH, CH and TH
18-21	Effect of agitation time on the Nickel biosorption by BGH, TDH, CH and TH
22-25	Effect of adsorbent dose on the Chromium biosorption by BGH, TDH, CH and TH
26-29	Effect of adsorbent dose on the Iron biosorption by BGH, TDH, CH and TH
30 - 33	Effect of adsorbent dose on the Mercury biosorption by BGH, TDH, CH and TH
34-37	Effect of adsorbent dose on the Nickel biosorption by BGH, TDH, CH and TH
38-41	Effect of pH on the Chromium biosorption by BGH, TDH, CH and TH
42-45	Effect of pH on the Iron biosorption by BGH, TDH, CH and TH
46-49	Effect of pH on the Mercury biosorption by BGH, TDH, CH and TH
50-53	Effect of pH on the Nickel biosorption by BGH, TDH, CH and

	TH
54-57	Langmuir adsorption isotherm for Cr (VI) by BGH, TDH, CH and
	TH
58-61	Langmuir adsorption isotherm for Iron biosorption by BGH,
	TDH, CH and TH
62-65	Langmuir adsorption isotherm for mercury by BGH, TDH, CH and TH
66-69	Langmuir adsorption isotherm for Nickel by BGH, TDH, CH and TH
70-73	Freundlich adsorption isotherm for Chromium (VI) by BGH,
	TDH, CH and TH
74-77	Freundlich adsorption isotherm for Iron biosorption by BGH,
	TDH, CH and TH
78-81	Freundlich adsorption isotherm for mercury (II) by BGH, TDH,
	CH and TH
82-85	Freundlich adsorption isotherm for Nickel (II) by BGH, TDH, CH
	and TH
86-88	Lagergren plots for Chromium by BGH, CH and TH
89-91	Lagergren plots for Iron adsorption by TDH, CH and TH
92-95	Lagergren plots for Mercury adsorption by TDH, CH and TH
96-99	Lagergren plots for Nickel adsorption by BGH, TDH, CH and TH
100-103	Effect of pH on the desorption of Chromium (VI), Iron (III),
	Nickel (II) and Mercury(II)

LIST OF NOTATIONS AND ABBREVIATIONS

q Amount of adsorbate adsorbed at equilibrium time t (mg of

adsorbate / gram of adsorbent)

qe Amount of adsorbate adsorbed at equilibrium time (mg of

adsorbate / gram of adsorbent)

qmax Langmuir constant (adsorption capacity) (mg/g)

b Langmuir constant (energy of adsorption) (L/mg)

R_L Equilibrium parameter

k_f Freundlich constant

n Freundlich constant

C_{eq} Adsorbate concentration in solution at equilibrium (mg/L)

k_{ad} Lagergren adsorption rate constant (1/min)

LC₅₀ Lethal concentration for 50 percent mortality of the animal

BGH Bengal gram husk

TDH Tur dal husk

TH Tamarind husk

CH Coffee husk

AM Amaranth

FG Fast green

MB Methylene blue

RB Rhodamine B

1.0 Introduction

Freshwater ecosystems are aquatic systems which contain drinkable water or water of almost no salt content. Freshwater resources include lakes and ponds, rivers and streams, reservoirs, wetlands, and groundwater. They provide the majority of our nation's drinking water resources, water resources for agriculture, industry, sanitation, as well as food including fish and shellfish. They also provide recreational opportunities and a means of transportation. In addition, freshwater ecosystems are home to numerous organisms (e.g., fish, amphibians, aquatic plants, and invertebrates). It has been estimated that 40% of all known fish species on Earth come from freshwater ecosystems

Human activities are causing species to disappear at an alarming rate. It has been estimated that between 1975 and 2015, species extinction will occur at a rate of 1 to 11 percent per decade. Aquatic species are at a higher risk of extinction than mammals and birds. Losses of this magnitude impact the entire ecosystem, depriving valuable resources used to provide food, medicines, and industrial materials to human beings. While freshwater and marine ecosystems face similar threats, there are some differences regarding the severity of each threat. Runoff from agricultural and urban areas, the invasion of exotic species, and the creation of dams and water diversion have been identified as the greatest challenges to freshwater environments (Allan and Flecker 1993; Scientific American 1997). Overfishing is the greatest threat to marine environments, thus the need for sustainable fisheries has been identified by the Environmental Defense Fund as the key priority in preserving marine biodiversity.

Other threats to aquatic biodiversity include urban development and resource-based industries, such as mining and forestry that destroy or reduce natural habitats. In addition, air and water pollution, sedimentation and erosion, and climate change also pose threats to aquatic biodiversity. Pollution has been very damaging to aquatic ecosystems, and may consist of agricultural, urban, and industrial wastes containing contaminants such as sewage, fertilizer, and heavy metals that have proven to be very damaging to aquatic habitats and species.

Metals, a major category of globally-distributed pollutants, are natural elements that have been extracted from the earth and harnessed for human industry and products for millenia. Metals are notable for their wide environmental dispersion from such activity; their tendency to accumulate in select tissues of the human body; and their overall potential to be toxic even at relatively minor levels of exposure. Today heavy metals are abundant in our drinking water, air and soil due to our increased use of these compounds. They are present in virtually every area of modern consumerism from construction materials to cosmetics, medicines to processed foods; fuel sources to agents of destruction; appliances to personal care products. It is very difficult for anyone to avoid exposure to any of the many harmful heavy metals that are so prevalent in our environment. The distribution of heavy metals in manufacturing industries is given in Table 1

Table: 1 General Distribution of Heavy metals in Particular Industrial Effluents

Industries	Ag	As	Cd	Cr	Cu	Fe	Hg	Mn	Ni	Pb Se	Ti	Zn
General Industry and Mining				X	X	X		X		X		X
Plating			X	X	X				X	X		X
Paint Products				X						X	X	
Fertilizers			X	X	X	X	X	X	X	X		X
Insecticides / Pesticides		X			X		X					
Tanning		X		X								
Paper Products				X	X		X		X	X	X	X
Photographic	X			X								
Fibers					X							X
Printing / Dyeing				X						X		
Electronics	X									X		
Cooling Water				X								
Pipe Corrosion					X					X		

Note: Ag - Silver;, As - Arsenic; Cd - Cadmium; Cr - Chromium; Cu - Copper; Fe - Iron, Hg - Mercury; Mn - Manganese; Ni - Nickel; Pb - Lead; Se - Selenium; Zn-Zinc.

Some metals, such as copper and iron, are essential to life and play irreplaceable roles in, for example, the functioning of critical enzyme systems. Other metals are

xenobiotics, i.e., they have no useful role in human physiology (and most other living organisms) and, even worse, as in the case of lead and mercury, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison."

1.1 Toxicological Aspects of Heavy metals

Due to their mobility in aquatic ecosystems and their toxicity to higher life forms, heavy metals in surface and groundwater supplies have been prioritised as major inorganic contaminants in the environment. Even if they are present in dilute, undetectable quantities, their recalcitrance and consequent persistence in water bodies imply that through natural processes such as biomagnification, concentrations may become elevated to such an extent that they begin exhibiting toxic characteristics. These metals can either be detected in their elemental state, which implies that they are not subject to further biodegradative processes or bound in various salt complexes. In either instance, metal ions cannot be mineralized. Apart from environmental issues, technological aspects of metal recovery from industrial waters must also be considered (Wyatt, 1988).

1.1.1 Effects of heavy metals on human health

The heavy metals hazardous to humans include lead, mercury, cadmium, arsenic, copper, zinc, and chromium. Such metals are found naturally in the soil in trace amounts, which pose few problems. When concentrated in particular areas, however, they present a serious danger. Arsenic and cadmium, for instance, can cause cancer. Mercury can cause mutations and genetic damage, while copper, lead, and mercury can cause brain and bone damage. Next section presents the harmful effects to the four heavy metals that are prevalent in the environment.

• Chromium: Humans are exposed to chromium through breathing, eating or drinking and through skin contact with chromium or chromium compounds. The level of chromium in air and water is generally low. In drinking water the level of chromium is usually low as well, but contaminated well water may contain the dangerous chromium (VI); hexavalent chromium. For most people eating food that contains chromium (III), it is the main route of chromium uptake, as chromium (III) occurs naturally in many vegetables, fruits, meats, yeasts and

grains. Various ways of food preparation and storage may alter the chromium contents of food, as in the case of food stored in steel tanks or cans leading to enhanced chromium concentrations. Chromium (VI) is a danger to human health, mainly for people who work in the steel and textile industry. Chromium (VI) is known to cause various health effects. When it is a compound in leather products, it can cause allergic reactions, such as skin rash. Inhaling chromium (VI) can cause nose irritations and nosebleeds. Other health problems that are caused by chromium (VI) are skin rashes, respiratory problems, weakened immune systems, kidney and liver damage, alteration of genetic material, lung cancer and death. The health hazards associated with exposure to chromium are dependent on its oxidation state. The metal form (chromium as it exists in this product) is of low toxicity. The hexavalent form is toxic. Adverse effects of the hexavalent form on the skin may include ulcerations, dermatitis, and allergic skin reactions. Inhalation of hexavalent chromium compounds can result in ulceration and perforation of the mucous membranes of the nasal septum, irritation of the pharynx and larynx, asthmatic bronchitis, bronchospasms and edema. Respiratory symptoms may include coughing and wheezing, shortness of breath, and nasal itch. Carcinogenicity- Chromium and most trivalent chromium compounds have been listed by the National Toxicology Program (NTP) as having inadequate evidence for carcinogenicity in experimental animals. According to NTP, there is sufficient evidence for carcinogenicity in experimental animals for the following hexavalent chromium compounds; calcium chromate, chromium trioxide, lead chromate, strontium chromate, and zinc chromate.

• Mercury: Mercury is generally considered to be one of the most toxic metals found in the environment (Serpone *et al.*, 1988). Once mercury enters the food chain, progressively larger accumulation of mercury compounds takes place in humans and animals. The major sources of mercury pollution in environment are industries like chlor-alkali, paints, pulp and paper, oil refining, rubber processing and fertilizer (Namasivayam and Periasamy, 1993), batteries, thermometers, fluorescent light tubes and high intensity street lamps, pesticides, cosmetics and pharmaceuticals (Krishnan and Anirudhan, 2002). Methyl mercury causes deformities in the offspring, mainly affecting the nervous system (teratogenic effects). Children suffer from mental retardation, cerebral palsy and convulsions. Mercury also brings about genetic defects causing chromosome breaking and

- interference in cell division, resulting in abnormal distribution of chromosome. Mercury causes impairment of pulmonary function and kidney, chest pain and dyspnoea (Beglund and Bertin, 2002; WHO, 1990). The harmful effect of methyl mercury on aquatic life and humans was amply brought out by the Minamata episode in Japan (WHO, 1991).
- Nickel: Electroplating is one important process involved in surface finishing and metal deposition for better life of articles and for decoration. Although several metals can be used for electroplating, nickel, copper, zinc and chromium are the most commonly used metals, the choice depending upon the specific requirement of the articles. During washing of the electroplating tanks, considerable amounts of the metal ions find their way into the effluent. Ni (II) is present in the effluents of silver refineries, electroplating, zinc base casting and storage battery industries (Sitting, 1976). Higher concentrations of nickel cause cancer of lungs, nose and bone. Dermatitis (Ni itch) is the most frequent effect of exposure to Ni, such as coins and jewellery. Acute poisoning of Ni (II) causes headache, dizziness, nausea and vomiting, chest pain, tightness of the chest, dry cough and shortness of breath, rapid respiration, cyanosis and extreme weakness (Al-Asheh and Duvnjak 1997; Kadirvelu, 1998; Beliles1979).
- **Iron:** Iron exists in two forms, soluble ferrous iron (Fe²⁺) and insoluble ferric particulate iron (Fe³⁺). The presence of iron in natural water may be attributed to the dissolution of rocks and minerals, acid mine drainage, landfill leachate sewage or engineering industries. Iron in water is generally present in the ferric state. The concentration of iron in well aerated water is seldom high but under reducing conditions, which may exist in some groundwater, lakes or reservoirs and in the absence of sulphate and carbonate, high concentrations of soluble ferrous iron may be found. The presence of iron at concentrations above 0.1 mg/l will damage the gills of the fish. The free radicals are extremely reactive and short lived. The free radicals formed by the iron on the surface of the gills will cause oxidation of the surrounding tissue and this will lead to massive destruction of gill tissue and anaemia. The presence of iron in drinking water supplies is objectionable for a number of reasons. Under the pH condition existing in drinking water supply, ferrous sulphate is unstable and precipitates as insoluble ferric hydroxide, which settles out as a rust coloured silt. Such water often tastes unpalatable even at low concentration (0.3 mg/L) and stains laundry

and plumbing fixtures. Iron is an essential element in human nutrition. It is contained in a number of biologically significant proteins, but ingestion in large quantities results in haemochromatosis where in tissue damage results from iron accumulation.

1.1.2 Effects of heavy metals on aquatic organisms

Aquatic organisms are adversely affected by heavy metals in the environment. The toxicity is largely a function of the water chemistry and sediment composition in the surface water system.

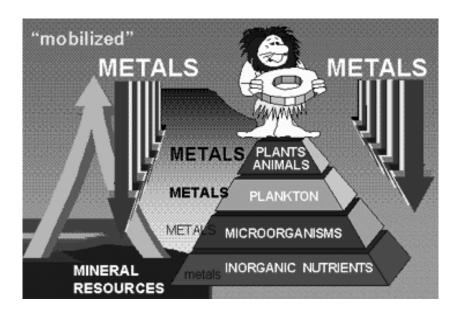


Figure 1: Biomagnification in natural systems

The above illustration (Figure 1) (Volesky, 2005) shows how metal ions can become bioaccumulated in an aquatic ecosystem. The metals are mineralised by microorganisms, which in turn are taken up by plankton and further by the aquatic organisms. Finally, the metals by now, several times biomagnified is taken up by man when he consumes fish from the contaminated water.

- i.) Slightly elevated metal levels in natural waters may cause the following sublethal effects in aquatic organisms: histological or morphological change in tissues;
- ii.) changes in physiology, such as suppression of growth and development, poor swimming performance, changes in circulation;
- iii.) change in biochemistry, such as enzyme activity and blood chemistry;

- iv.) change in behaviour; and
- v.) changes in reproduction (Connell et al., 1984).

Many organisms are able to regulate the metal concentrations in their tissues. Fish and crustacea can excrete essential metals, such as copper, zinc, and iron that are present in excess. Some can also excrete non-essential metals, such as mercury and cadmium, although this is usually met with less success (Connell *et al.*, 1984). Research has shown that aquatic plants and bivalves are not able to successfully regulate metal uptake (Connell *et al.*, 1984). Thus, bivalves tend to suffer from metal accumulation in polluted environments. In estuarine systems, bivalves often serve as biomonitor organisms in areas of suspected pollution (Kennish, 1992). Shellfishing waters are closed if metal levels make shellfish unfit for human consumption.

In comparison to freshwater fish and invertebrates, aquatic plants are equally or less sensitive to cadmium, copper, lead, mercury, nickel, and zinc. Thus, the water resource should be managed for the protection of fish and invertebrates, in order to ensure aquatic plant survivability (USEPA, 1987). Metal uptake rates will vary according to the organism and the metal in question. Phytoplankton and zooplankton often assimilate available metals quickly because of their high surface area to volume ratio. The ability of fish and invertebrates to adsorb metals is largely dependent on the physical and chemical characteristics of the metal (Kennish, 1992). With the exception of mercury, little metal bioaccumulation has been observed in aquatic organisms (Kennish, 1992). Metals may enter the systems of aquatic organisms via three main pathways:

- i.) Free metal ions that are absorbed through respiratory surface (e.g., gills) are readily diffused into the blood stream.
- ii.) Free metal ions that are adsorbed onto body surfaces are passively diffused into the blood stream.
- iii.) Metals that are sorbed onto food and particulates may be ingested, as well as free ions ingested with water (Connell *et al.*, 1984). For eg: Chromium is not known to accumulate in the bodies of fish, but high concentrations of chromium, due to the disposal of metal products in surface waters, can damage the gills of fish that swim near the point of disposal.

1.1.3 Irrigation effects of heavy metals

Irrigation water contaminated with sewage or industrial effluents may transport dissolved heavy metals to agricultural fields. Although most heavy metals do not pose a threat to humans through crop consumption, cadmium may be incorporated into plant tissue. Accumulation usually occurs in plant roots, but may also occur throughout the plant (De Voogt *et al.*, 1980).

Most irrigation systems are designed to allow for up to 30 percent of the water applied to not be absorbed and to leave the field as return flow. Return flow either joins the groundwater or runs off the field surface (tailwater). Sometimes tailwater are rerouted into streams because of downstream water rights or a necessity to maintain streamflow. However, usually the tailwater is collected and stored until it can be reused or delivered to another field (USEPA 1993a).

Tailwater is often stored in small lakes or reservoirs, where heavy metals can accumulate as return flow is pumped in and out. These metals can adversely impact aquatic communities. An extreme example of this is the Kesterson Reservoir in the San Joaquin Valley, California, which received subsurface agricultural drainwater containing high levels of selenium and salts that had been leached from the soil during irrigation. Studies in the Kesterson Reservoir revealed elevated levels of selenium in water, sediments, terrestrial and aquatic vegetation, and aquatic insects. The elevated levels of selenium were cited as relating to the low reproductive success, high mortality, and developmental abnormalities in embryos and chicks of nesting aquatic birds (Schuler *et al.* 1990).

1.2 Need for the removal of heavy metals

Continuous discharge of industrial, domestic and agricultural wastes in rivers and lakes causes deposit of pollutants in sediments. Such pollutants include heavy metals, which endanger public health after being incorporated in food chain. Heavy metals cannot be destroyed through biological degradation, as is the case with most organic pollutants. Incidence of heavy metal accumulation in fish, oysters, mussels, sediments and other components of aquatic ecosystems have been reported from all over the world (Naimo, 1995; Sayler et al., 1975).

Excessive amounts of some heavy metals can be toxic through direct action of the metal or through their inorganic salts or via organic compounds from which the metal can become easily detached or introduced into the cell. Exposure to different metals may occur in common circumstances, particularly in industrial setting. Accidents in some environments can result in acute, high level exposure. Some of the heavy metals are toxic to aquatic organisms even at low concentration. The problem of heavy metal pollution in water and aquatic organisms including fish, needs continuous monitoring and surveillance as these elements do not degrade and tend to biomagnify in man through food chain. Hence there is a need to remove the heavy metals from the aquatic ecosystems.

Research and development, therefore focuses on sector-specific methods and technologies to remove colour and heavy metals from different kinds of waste streams. In view of the above toxicological effects of heavy metals on environment, animals and human beings, it becomes imperative to treat these toxic compounds in wastewater effluents before they are discharged into freshwater bodies.

1.3 Conventional methods for the treatment of metals

Over the last few decades, several methods have been devised for the treatment and removal of heavy metals. Numerous industries (e.g., electroplating, metal finishing operations, electronic –circuit production, steel and non-ferrous processes and fine-chemical and pharmaceutical production) discharge a variety of toxic metals into the environment. For several years now, it is mandatory that industry is required to remove metal pollutants from liquid discharges. The commonly used procedures for removing metal ions from aqueous streams include chemical precipitation, lime coagulation, ion exchange, reverse osmosis and solvent extraction (Rich and Cherry, 1987). The process description of each method is presented below.

1.3.1 Chemical precipitation:

Precipitation of metals is achieved by the addition of coagulants such as alum, lime, iron salts and other organic polymers. The large amount of sludge containing toxic compounds produced during the process is the main disadvantage.

- **Hydroxide precipitation:** Chemical precipitation of heavy metals as their hydroxides using lime or sodium hydroxide is widely used. Lime is generally favoured for precipitation purposes due to the low cost of precipitant, ease of pH control in the range of 8.0 –10.0 and the excess of lime also serves as an adsorbent for the removal of metal ions. The efficiency of the process depends on a number of factors, which include the ease of hydrolysis of the metal ion, nature of the oxidation state, pH, presence of complex forming ions, standing time, degree of agitation and settling and filtering and characteristics of the precipitate. The limitations of this method include difference between metals in the optimum pH for hydroxide formation may lead to the problems in the treatment of effluents containing combined metal ions. Variability in metal hydroxide solubility at a fixed pH is another drawback.
- Carbonate precipitation: Carbonate precipitation of metals using calcium or sodium carbonate is very limited. Patterson *et al.*, 1997 reported improved results using carbonate precipitate for Cd (II) and Pb (II) from electroplating effluents. When the pH was brought to 7.5, residual concentration of Pb (II) and Cd (II) were 0.60 and 0.25 mg/L respectively.
- Sulphide precipitation: Since most of the heavy metals form stable sulphides, excellent metal removal can be obtained by sulphide precipitation. Treatment with sulphides is most advantageous when used as a polishing step after conventional hydroxide precipitation or when very high metal removals are required.

1.3.2 Chemical reduction

Reduction of hexavalent chromium can also be accomplished with electro-chemical units. The electrochemical chromium reduction process uses consumable iron electrodes and an electric current to generate ferrous ions that react with hexavalent chromium to give trivalent chromium as follows (USEPA, 1979).

$$3Fe^{2+} + CrO_4^{2-} + 4H_2O \longrightarrow 3Fe^{3+} + Cr^{3+} + 8OH^{-}....(1)$$

Another application of reduction process is the use of sodium borohydride, which has been considered effective for the removal of mercury, cadmium, lead, silver and gold (Kiff, 1987).

1.3.3 Xanthate process

Insoluble starch xanthate (ISX) is made from commercial cross linked starch by reacting it with sodium hydroxide and carbon disulphide. To give the product stability and to improve the sludge settling rate, magnesium sulphate is also added. ISX works like an ion exchanger, removing the heavy metals from the wastewater and replacing them with sodium and magnesium. Average capacity is 1.1-1.5 meq of metal ion per gram of ISX (Anon, 1978).

ISX is most commonly used by adding to it the wastewater as slurry for continuous flow operations or in the solid form for batch treatments. It should be added to the effluent at pH \geq 3. Then the pH should be allowed to rise above 7 for optimum metal removal (Wing, 1978). Residual metal ion level below 50 µg/L has been reported (Hanway *et al.*, 1978, Wing *et al.*, 1978). The effectiveness of soluble starch xanthate (SSX) for removal of Cd (II), Cr (VI) and Cu (II) and insoluble starch xanthate (ISX) for Cr (VI) and Cu (II) have been evaluated under different aqueous phase conditions. Insoluble starch xanthate had better binding capacity for metals. The binding capacity of SSX and ISX respectively for different metal ions follows the sequence of Cr (VI)> Cu (II)> Cd(II) and Cr (VI)> Cu (II) (Tare *et al.*, 1988).

1.3.4 Solvent extraction

Liquid-liquid extraction (also frequently referred as solvent extraction) of metals from solutions on a large scale has experienced a phenomenal growth in recent years due to the introduction of selective complexing agents (Beszedits, 1988). In addition to hydrometallurgical applications, solvent extraction has gained widespread usage for waste reprocessing and effluent treatment.

Solvent extraction involves an organic and an aqueous phase. The aqueous solution containing the metal or metals of interest is mixed with the appropriate organic solvent and the metal passes into the organic phase. In order to recover the extracted metal, the organic solvent is contacted with an aqueous solution whose composition is such that the metal is stripped from the organic phase and is reextracted into the stripping solution. The concentration of the metal in the strip liquor may be increased, often 110 to 100 times over that of the original feed solution. Once the metal of

interest has been removed, the organic solvent is recycled either directly or after a fraction of it has been treated to remove the impurities.

1.3.5 Membrane process

Important examples of membrane process applicable to inorganic wastewater treatment include reverse osmosis and eletrodialysis (EPA, 1980). These processes involve ionic concentration by the use of selective membrane with a specific driving force. For reverse osmosis, pressure difference is employed to initiate the transport of solvent across a semipermeable membrane and electro dialysis relies on ion migration through selective permeable membranes in response to a current applied to electrodes. The application of the membrane process described is limited due to pretreatment requirements, primarily, for the removal of suspended solids. The methods are expensive and sophisticated, requiring a higher level of technical expertise to operate.

A liquid membrane is a thin film that selectively permits the passage of a specific constituent from a mixture (Beszedits, 1988). Unlike solid membranes, however liquid membranes separate by chemistry rather than size, and thus in many ways liquid membrane technology is similar to solvent extraction. Since liquid membrane technology is a fairly recent development, a number of problems remain to be solved. A major issue with the use of supported membranes is the long term stability of the membranes, whereas the efficient breakup of microspheres for product recovery is one of the difficulties encountered frequently with emulsion membranes.

1.3.6 Evaporators

In the electroplating industry, evaporators are used chiefly to concentrate and recover valuable plating chemicals. Recovery is accomplished by boiling sufficient water from the collected rinse stream to allow the concentrate to be returned to the plating bath. Many of the evaporators in use also permit the recovery of the condensed steam for recycle as rinse water. Four types of evaporators are used throughout the electroplating industry (USEPA, 1979a) (I) Rising film evaporators; (ii) Flash evaporators using waste heat; (iii) submerged tube evaporators; (iv) Atmospheric evaporators. Both capital and operational costs for evaporative recovery systems are high. Chemical and water reuse values must offset these costs for evaporative recovery to become economically feasible.

1.3.7 Cementation

Cementation is the displacement of a metal from solution by a metal higher in the electromotive series. It offers an attractive possibility for treating any wastewater containing reducible metallic ions. In practice, a considerable spread in the electromotive force between metals is necessary to ensure adequate cementation capability. Due to its low cost and ready availability, scrap iron is the metal used often. Cementation is especially suitable for small wastewater flow because a long contact time is required. Some common examples of cementation in wastewater treatment include the precipitation of copper from printed etching solutions and the reduction of Cr (VI) in chromium plating and chromate-inhibited cooling water discharges (Case, 1974). Removal and recovery of lead ion by cementation on iron sphere packed bed has been reported (Angelidis *et al.*, 1988, 1989). Lead was replaced by a less toxic metal in a harmless and reusable form.

1.3.8 Ion exchange

Ion exchange resins are available selectively for certain metal ions. The cations are exchanged for H⁺ or Na⁺. The cation exchange resins are mostly synthetic polymers containing an active ion group such as SO₃H. The natural materials such as zeolites can be used as ion exchange media (Van der Heen, 1977). The modified zeolites like zeocarb and chalcarb have greater affinity for metals like Ni and Pb (Groffman *et al.*, 1992). The limitations on the use of ion exchange for inorganic effluent treatment are primarily high cost and the requirements for appropriate pretreatment systems. Ion exchange is capable of providing metal ion concentrations to parts per million levels. However, in the presence of large quantities of competing mono-and divalent ions such as Na and Ca, ion exchange is almost totally ineffective.

1.3.9 Electrodeposition

Some metals found in waste solution can be recovered by electrodeposition using insoluble anodes. For example, spent solutions resulting from sulphuric acid cleaning of Cu may be saturated with copper sulphate in the presence of residual acid. These are ideal for electro-winning where the high quality cathode copper can be electrolytically deposited while free sulphuric acid is regenerated.

1.3.10 Adsorption

Since activated carbon also possesses an affinity for heavy metals, considerable attention has been focussed on the use of carbon for the adsorption of hexavalent chromium, complexed cyanides and metals present in various other forms from wastewaters. Watonabe and Ogawa (1929) first presented the use of activated carbon for the adsorption of heavy metals. The mechanism of removal of hexavalent and trivalent chromium from synthetic solutions and electroplating effluents has been extensively studied by a number of researchers. According to some investigators, the removal of Cr (VI) occurs through several steps of interfacial reactions (Huang and Bowers, 1979).

- (i) The direct adsorption of Cr^{6+} onto carbon surface.
- (ii) The reduction of Cr⁶⁺ species to Cr³⁺ by carbon on the surface.
- (iii) The adsorption of the Cr³⁺ species produced, which occurs to a much lesser extent than the adsorption of the Cr⁶⁺ species.

Adsorption of Cr (III) and Cr (VI) on activated carbon from aqueous solutions has been studied (Toledo, 1994). Granular activated carbon columns have been used to treat wastewaters containing lead and cadmium (Reed and Arunachalam, 1994, Reed *et al.*, 1994). Granular activated carbon was used for the removal of Pb (II) from aqueous solutions (Cheng *et al.*, 1993). The adsorption process was inhibited by the presence of humic acid, iron (III), aluminum (III) and calcium (II).

1.4 Disadvantages of conventional methods for treatment of wastewater containing heavy metals

Metals are a class of pollutants, often toxic and dangerous, widely present in industrial and household wastewaters. Electroplating and metal finishing operations, electronic circuit production, steel and aluminum processes to name but a few industries, produce large quantities of wastewater containing metals. Although metal precipitation using a cheap alkali such as lime (calcium hydroxide) has been the most favoured option, other separation technologies are now beginning to find favour. Precipitation, by adjusting the pH value is not selective and any iron (ferric ion) present in the liquid effluent will be precipitated initially followed by other metals. Consequently precipitation produces large quantities of solid sludge for disposal, for example precipitation as hydroxides of 100 mg/l of copper (II), cadmium (II) or

mercury (II) produces as much as 10-, 9- and 5 fold mg/l of sludges respectively. The metal hydroxide sludge resulting from treatment of electroplating wastewater has been classified as a hazardous waste. The performance characteristics of heavy metal waste water treatment technologies are identified in Table 2. The versatility, simplicity and other technology characteristics will contribute to the overall process costs, both capital and operational. At present many of these technologies such as ion exchange represent significant capital investments by industry.

Table 2 Performance characteristics of various heavy metal removal /recovery technologies

Technology	pH change	Metal selectivity	Influence of Suspended solids	Tolerance of organic molecules	Working level for appropriate metal (mg/I)
Adsorption, e.g. Granulated Activated carbon	Limited tolerance	Moderate	Fouled	Can be poisoned	<10
Electro chemical	Tolerant	Moderate	Can be engineered to tolerate	Can be accommodated	>10
Ion exchange	Limited tolerance	Chelate - resins can be selective	Fouled	Can be poisoned	<100
Membrane Precipitation	Limited tolerance	Moderate	Fouled	Intolerant	>10
(a) Hydroxide	Tolerant	Non- selective	Tolerant	Tolerant	>10
(b) Sulphide	Limited tolerance	Limited selective pH dependent	Tolerant	Tolerant	>10
Solvent extraction	Some systems pH tolerant	Metal selective extractants available	Fouled	Intolerant	>100

As seen from the table above, conventional methods are ineffective in the removal of low concentrations of heavy metals and they are non-selective. Moreover, it is not possible to recover the heavy metals by the above mentioned methods.

1.5 Biosorption

During the 1970's increasing environmental awareness and concern led to a search for new techniques capable of inexpensive treatment of polluted wastewaters with metals. The search for new technologies involving the removal of toxic metals from wastewaters has directed attention to biosorption, based on binding capacities of various biological materials.

Till date, research in the area of biosorption suggests it to be an ideal alternative for decontamination of metal containing effluents. Biosorbents are attractive since naturally occurring biomass/adsorbents or spent biomass can be effectively used. Biosorption is a rapid phenomenon of passive metal sequestration by the non-growing biomass/adsorbents. Results are convincing and binding capacities of certain biomass/adsorbents are comparable with the commercial synthetic cation exchange resins.

The biosorption process involves a solid phase (sorbent or biosorbent; adsorbent; biological material) and a liquid phase (solvent, normally water) containing a dissolved species to be sorbed (adsorbate, metal). Due to the higher affinity of the adsorbent for the adsorbate species, the latter is attracted and bound there by different mechanisms. The process continues till equilibrium is established between the amount of solid-bound adsorbate species and its portion remaining in the solution. The degree of adsorbent affinity for the adsorbate determines its distribution between the solid and liquid phases.

There are many types of adsorbents; Earth's forests and plants, ocean and freshwater plankton, algae and fish, all living creatures, that including animals are all "biomass/adsorbents". The renewable character of biomass that grows, fuelled directly or indirectly by sunshine, makes it an inexhaustible pool of chemicals of all kinds.

Biosorption has advantages compared with conventional techniques (Volesky, 1999). Some of these are listed below:

- Cheap: the cost of the biosorbent is low since they often are made from abundant or waste material.
- Metal selective: the metalsorbing performance of different types of biomass can be
 more or less selective on different metals. This depends on various factors such as
 type of biomass, mixture in the solution, type of biomass preparation and physicochemical treatment.
- Regenerative: biosorbents can be reused, after the metal is recycled.
- No sludge generation: no secondary problems with sludge occur with biosorption, as is the case with many other techniques, for example, precipitation.
- Metal recovery possible: In case of metals, it can be recovered after being sorbed from the solution.
- Competitive performance: biosorption is capable of a performance comparable to the most similar technique, ion exchange treatment. Ion exchange is, as mentioned above, rather costly, making the low cost of biosorption a major factor.

Biosorbents intended for bioremediation environmental applications are waste biomass of crops, algae, fungi, bacteria, etc., which are the naturally abundant. Numerous chemical groups have been suggested to contribute to biosorption. A review of biosorption of heavy metals by microorganisms is presented below. Biosorption by microorganisms have various disadvantages, and hence many low cost adsorbents (industrial/agricultural waste products/byproducts) are increasingly used as biosorbents. This chapter also provides review of the low cost adsorbents used for removal of heavy metals (Ahalya *et al.*, 2004)

1.5.1 Biosorption of heavy metals by microorganisms

A large number of microorganisms belonging to various groups, viz. bacteria, fungi, yeasts, cyanobacteria and algae have been reported to bind a variety of heavy metals to different extents. The role of various microorganisms by biosorption in the removal and recovery of heavy metal(s) has been well reviewed and documented (Stratton, 1987; Gadd and Griffiths, 1978; Volesky, 1990; Wase and Foster, 1997; Greene and Darnall, 1990; Gadd 1988). Most of the biosorption studies reported in literatures

have been carried out with living microorganisms. However due to certain inherent disadvantages, use of living microorganisms for metal removal and recovery is not generally feasible in all situations. For example, industrial effluents contain high concentrations of toxic metals under widely varying pH conditions. These conditions are not always conducive to the growth and maintenance of an active microbial population. There are several advantages of biosorption of using non living biomass and they are as follows:

- Growth independent nonliving biomass is not subject to toxicity limitation by cells.
- The biomass from an existing fermentation industry, which essentially is a waste after fermentation, can be a cheap source of biomass.
- The process is not governed by physiological constraints of microbial cells.
- Because nonliving biomass behaves as an ion exchanger, the process is very rapid, requiring anywhere between few minutes to few hours. Metal loading is very high on the surface of the biomass leading to very efficient metal uptake.
- Because cells are non-living processing conditions are not restricted to those conducive for the growth of the cells. Hence, a wider range of operating conditions such as pH, temperature and metal concentrations are possible. Also aseptic operating conditions are not essential.
- Metals can be desorbed readily and then recovered. If the value and the amount of metal recovered are insignificant and if the biomass is plentiful, the metal loaded biomass can be incinerated, eliminating further treatment.

Biosorption essentially involves adsorption processes such as ionic, chemical and physical adsorption. A variety of ligands located on the fungal cell walls are known to be involved in metal chelation. These include carboxyl, amine, hydroxyl, phosphate and sulphydryl groups. Metal ions could be adsorbed by complexing with negatively charged reactions sites on the cell surface. Table 3 presents an exhaustive list of microrganisms used for the uptake of heavy metals.

Table 3 Biosorbent uptake of metals by Microbial Biomass

Metal	Biomass Type	Biomass class	Metal uptake (mg/g)	Reference
Ag	Freshwater alga	Biosorbent	86-94	Brierley and Vance, 1988; Brierley <i>et al.</i> , 1986
	Fungal biomass	Biosorbent	65	Brierley et al., 1986
	Rhizopus arrhizus	Fungus	54	Tobin et al., 1984
	Streptomyces noursei	Filamentous bacter	38.4	Mattuschka et al., 1993
	Sacchromyces cerevisiae	Yeast	4.7	Brady and Duncan, 1993
Au	Sargassum natans	Brown alga	400	Volesky and Kuyucak, 1988
	Aspergillus niger	Fungus	176	Kuyuack and Volesky, 1988
			15	Gee and Dudeney, 1988
	Rhizopus arrhizus	Fungus	164	Kuyuack and Volesky, 1988
	Palmaria tevera	Marine alga	164	Kuyuack and Volesky, 1988
	Palmaria palmata	Marine alga	124	Kuyuack and Volesky, 1988
	Chlorella pyrenoidosa	Freshwater alga	98	Darnall et al., 1988
	Cyanidium caldarium	Alga	84	Darnall et al., 1988
	Chlorella vulgaris	Freshwater alga	80	Gee and Dudeney, 1988
	Bacillus subtilis	Bacteria Cell wall	79	Beveridge, 1986
	Chondrus crispus	Marine alga	76	Kuyuack and Volesky, 1988
	Bacillus subtilis	Bacterium	70	Gee and Dudeney, 1988
	Spirulina platensis	Freshwater alga	71	Darnall et al., 1988
	•		58	Gee and Dudeney, 1988
	Rhodymenia palmata	Marine alga	40	Darnall et al., 1988
	Ascophyllum nodosum	Brown marine alga	24	Kuyuack and Volesky, 1988
Cd	Ascophyllum nodosum	Brown markertman ine alga	215	Holan <i>et al.</i> , 1993
	Sargassum natans	Brown marine alga	135	Holan et al., 1993
	Fucus vesiculosus	Brown marine	73	Holan et al., 1993

		alga		
	Candida	Yeast	60	Mattuschka et al., 1993
	tropicalis			
	Pencillium	Fungus	56	Holan and Volesky, 1995
	chrysogenum			
			11	Niu <i>et al.</i> , 1993
	Rhizopus arrhizus	Fungus	30	Tobin <i>et al.</i> , 1984
	Sacchromyces	Yeast	20-40	Volesky et al., 1993
	cervisiae			
	Rhizopus arrhizus	Fungus	27	Fourest and Roux, 1992
	Rhizopus	Fungus	19	Holan and Volesky, 1995
	nigricans			
	Pencillium	Fungus	0.4	Townsley et al., 1996
	spinulosum			
	Pantoea sp. TEM	Bacteria	204.1	Guven Ozdemir et al., 2004
	18			
	Chlamydomonas	Alga	42.6	Tuzun <i>et al.</i> , 2005
	reinhardtii			
	Spirulina sp.	Blue green	1.77 meq/g	Chojnacka et al., 2005
		algae		
	Enterobacter	Marine	16	Anita Iyer et al., 2005
	cloaceae	bacterium		
	(Exopolysacchari			
	de)	_		
	Dadina an	Brown	0.75	Sheng <i>et al.</i> , 2004
	Padina sp.	seaweed	0.76	G1
	Sargassum sp.	Brown	0.76	Sheng <i>et al.</i> , 2004
		seaweed	0.50	G1 1 2004
	Ulva sp.	Green seaweed	0.58	Sheng <i>et al.</i> , 2004
	Gracillaria sp.	Red seaweed	0.30	Sheng et al., 2004
	•	Cromahaatamia	115 425	Zalvania A. Mahamad 2001
	Gloeothece	Cyanobacteria	115–425 μg	Zakaria A. Mohamed, 2001
Co	magna A saanhyllum	Brown marine	mg ⁻¹ 100	Kuyucak and Volesky,
Co	Ascophyllum nodosum	algae	100	Kuyucak and Volesky, 1989a
	Sacchromyces	Yeast	4.7	Brady and Duncan, 1993
	cerevisiae	1 Cast	4.7	Brady and Duncan, 1993
	Ulva reticulata	Marine green	46.1	Vijayaraghavan et al., 2005
	Otva reticulaia	algae	40.1	v ijayaragilavali et ut., 2003
	Enterobacter	Marine	4.38	Anita Iyer et al., 2005
	cloaceae	bacterium	4.50	Ainta Tyci et at., 2005
Cr	cioaceae	Bacterium	118 Cr ³⁺	Brierley and Brierley, 1993
Cı	Bacillus biomass	Ductorium	60 Cr ⁶⁺	Differency and Differency, 1773
	Rhizopus arrhizus	Fungus	31	Tobin <i>et al.</i> , 1984
	Candida	Yeast	4.6	Mattuschka <i>et al.</i> , 1993
	Синини	1 Cust	r.U	manusciika et at., 1773

	tropicalis			
	Streptomyces nouresei	Bacteria	1.8	Mattuschka et al., 1993
	Pantoea sp. TEM 18	Bacteria	204.1	Guven Ozdemir et al., 2004
	Spirulina sp.	Cyanobacteria	10.7 meq/g	Chojnacka et al., 2005
	Spirogyra sp.	Filamentous algae	4.7	Gupta et al., 2001
Cu	Bacillus subtilis	Biosorbent	152	Beveridge, 1986; Brierley <i>et al.</i> , 1986; Brierley and Brierley, 1993
	Candida tropicalis	Yeast	80	Mattuschka et al., 1993
	Manganese oxidising bacteria	MK-2	50	Stuetz et al., 1993
	Cladosporium resinae	Fungus	18	Gadd et al., 1988
	Rhizopus arrhizus	Fungus	16	Gadd et al; 1988
	Saccharomyces crevisae	Yeast	17-40; 10; 6.3	·
	Pichia guilliermondii	Yeast	11	Mattuschka et al., 1993
	Scenedesmus obliquus	Freshwater algae	10	Mattuschka et al., 1993
	Rhizopus arrhizus	Fungus	10	Gadd et al; 1988
	Pencillium chrysogenum	Fungus	9	Niu et al., 1993
	Streptomyces noursei sp.	Filamentous bacteria	5	Mattuschka et al., 1993
	Bacillus sp	Bacterium	5	Cotoras et al., 1993
	Pencillium spinulosum	Fungus	0.4-2	Townsley et al., 1986
	Aspergillus niger	Fungus	1.7	Townsley et al., 1986
	Trichoderma viride	Fungus	1.2	Townsley et al., 1986
	Pencillium chrysogenum	Fungus	0.75	Paknikar et al., 1993
	Pantoea sp. TEM 18	Bacteria	31.3	Guven Ozdemir <i>et al.</i> , 2004.
	Ulva reticulata	Marine green alga	56.3	Vijayaraghavan <i>et al.</i> , 2005
	Spirulina sp.	Blue green algae	6.17 meq/g	Chojnacka et al., 2005

	Enterobacter cloaceae	Marine bacterium	6.60	Anita Iyer et al., 2005
	(Exopolysacchari de)			
	Padina sp.	Brown seaweed	1.14	Sheng et al., 2004
	Sargassum sp.	Brown seaweed	0.99	Sheng et al., 2004
	Ulva sp.	Green seaweed	0.75	Sheng et al., 2004
	Gracillaria sp.	Red seaweed	0.59	Sheng et al., 2004
	Thiobacillus thiooxidans	Bacteria	38.54	Liu et al., 2004
	Ulothrix zonata	Algae	176.20	Nuhoglu et al., 2002
Fe	Bacillus subtillis	Bacterial cell wall	201	Beveridge, 1986
	Bacillus biomass	preparation Bacterium	107	Brierley and Brierley, 1993
	Sargassum fluitans	Brown alga	60	Figueira et al., 1995
Hg	Rhizopus arrhizus	Fungus	54	Tobin et al., 1984
	Pencillium chrysogenum (biomass not necessarily in its natural state)	Fungus	20	Nemec et al., 1977
	Cystoseira baccata	Marine alga	178	Herrero et al., 2005
	Chlamydomonas reinhardtii	Algae	72.2	Tuzun et al., 2005
Ni	Fucus vesiculosus	Brown marine algae	40	Holan and Volesky, 1994
	Ascophylum nodosum	Brown marine algae	30	Holan and Volesky, 1994
	Sargassum natans	Brown marine algae	24-44	Holan and Volesky, 1994
	Bacillus licheniformis	Bacterial cell wall preparation	29	Beveridge, 1986
	Candida tropicalis	Yeast	20	Mattuschka et al., 1993
	Rhizopus arrhizus Bacillus subtillis	Fungus Bacterial cell wall	18 6	Fourest and Roux, 1992 Beveridge, 1986

		proporation		
	Rhizopus	preparation Fungus	5	Holan and Volesky, 1995
	nigricans	i ungus	3	Holan and Volesky, 1993
	Absidia orchidis	Fungus	5	Kuycak and Volesky, 1988
	Ulva reticulata	Marine green	46.5	Vijayaraghavan <i>et al.</i> , 2005
	Orva renemina	algae	40.5	v ijayaragnavan et at., 2003
	Padina sp.	Brown	0.63	Sheng et al., 2004
	i danie sp.	seaweed	0.03	Sheng et at., 2001
	Sargassum sp.	Brown	0.61	Sheng et al., 2004
	2 g	seaweed		2333.6
	Ulva sp.	Green seaweed	0.29	Sheng et al., 2004
	Gracillaria sp.	Red seaweed	0.28	Sheng et al., 2004
	Polyporous	White rot	57	Dilek <i>et al.</i> , 2002
	versicolor	fungus		•
Pb	Bacillus subtilis	Biosorbent	601	Brierley et al., 1986
	(biomass not			•
	necessarily in its			
	natural state)			
	Absidia orchidis	Fungus	351	Holan and Volesky, 1995
	Fucus vesiculosus	Brown marine	220-370	Holan and Volesky, 1994
		algae		
	Ascophyllum	Brown marine	270-360	Holan and Volesky, 1994
	nodosum	algae		
	Sargassum natans	Brown marine	220-270	Holan and Volesky, 1994
		algae		
	Bacillis subtilis	Biosorbent	189	Brierley and Brierley, 1993
	(biomass not			
	necessarily in its			
	natural state)	_	122 02	
	Pencillium	Fungus	122; 93	Niu et al., 1993; Holan and
	chrysogenum	F	1.66	Volesky, 1995
	Rhizopus	Fungus	166	Holan and Volesky, 1995
	nigricans Strontomycas	Filamentous	100	Erija and Myora Voith 1006
	Streptomyces longwoodensis	bacteria	100	Friis and Myers-Keith, 1986
	Rhizopus arrhizus	Fungus	91; 55	Tobin et al., 1984; Fourest
	Кицориз аттициз	Tungus	91, 55	and Roux, 1992, Holan and
				Voleky, 1995.
	Streptomyces	Filamentous	55	Mattuschka <i>et al.</i> , 1993
	noursei	bacteria		THE COURT OF WELL, 1775
	Chlamydomonas	Algae	96.3	Tuzun, et al., 2005
	reinhardtii		- 0.0	, 2. 200
	Padina sp.	Brown	1.25	Sheng et al., 2004
	· r	seaweed		
	Sargassum sp.	Brown	1.26	Sheng et al., 2004
	Sargassum sp.		1.26	Sheng et al., 2004

		seaweed		
	Ulva sp.	Green seaweed	1.46	Sheng et al., 2004
	Gracillaria sp.	Red seaweed	0.45	Sheng et al., 2004
	Ecklonia radiata	Marine alga	282	Matheickal and Yu, 1996
Pd	Freshwater	Biosorbent	436	Brierley and Vance, 1988.
	alga(biomass not			•
	necessarily in its			
	natural state)			
	Fungal biomass	Biosorbent	65	Brierley et al., 1988
Pt	Freshwater alga	Biosorbent	53	Brierley and Vance, 1988;
	(biomass not			Brierley et al., 1988
	necessarily in its			
	natural state)			
U	Sargassum	Brown algae	520	Yang and Volesky 1999;
	fluitans			Yang and Volesky, 1999
	Streptomyces	Filamentous	440	Friis and Myers-Keith, 1986
	longwoodensis	bacteria		
	Rhizopus arrhizus	Fungus	220; 195	Volesky and Tsezos, 1981;
				Tobin <i>et al.</i> , 1984
	Sacchromyces	Yeast	55-140	Volesky and May Phillips,
	crevisae			1995
	Bacillus sp.	Bacterium	38	Cotoras et al., 1993
	Chaetomium	Fungus	27	Khalid <i>et al.</i> , 1993.
	distortum	_		
	Trichoderma	Fungus	26	Khalid <i>et al.</i> , 1993.
	harzianum	_		
	Pencillium	Fungus	25	Nemec <i>et al.</i> , 1977
	chrysogenum			
	(biomass not			
	necessarily in its			
	natural state)			VI 1:1 1002
TT1	Alternaria tenulis	F	1.60 .02	Khalid <i>et al.</i> , 1993.
Th	Rhizopus arrhizus	Fungus	160; 93	Tsezos and Volesky, 1981;
	C 1	V	70	Gadd <i>et al.</i> , 1988
	Sacchromyces	Yeast	70	Gadd <i>et al.</i> , 1988
Zn	cerevisae Bacillus subtilis	Biosorbent	127	Brierley et al., 1986
ZII		Diosorbeilt	137	Briefley et at., 1980
	(biomass not necessarily in its			
	natural state)			
	Sargassa sp.	Brown algae	70	Davis et al., 2003; Davis et
	Sargassa sp.	Drown argae	70	al., 2000; Figueira et al.,
				1995; Figueira <i>et al.</i> , 1997;
				Figueira et al., 2000;
				Figueira et al., 1999;
				11gueira et at., 1999,

			Schiewer et al., 1995;
			Scheiwer and Volesky,
			1996; Scheiwer and
			Volesky 1997; Scheiwer and Wong, 1999.
Manganese oxidising bacteria	(MK-2)	39	Stuetz et al., 1993
Sacchromyces cerevisae	Yeast	14-40	Volesky and May-Phillips, 1995
Candida tropicalis	Yeast	30	Mattuschka et al., 1993
Rhizopus arrhizus	Fungus	20; 14	Tobin et al., 1984; Gadd et al., 1988
Pencillium chrysogenum	Fungus	6.5	Niu <i>et al.</i> , 1993; Paknikar <i>et al.</i> , 1993
Bacillus sp.	Bacterium	3.4	Cotoras et al., 1993
Pencillium spinulosum	Fungus	0.2	Townsley et al., 1986
Padina sp.	Brown seaweed	0.81	Sheng et al., 2004
Sargassum sp.	Brown seaweed	0.50	Sheng et al., 2004
Ulva sp.	Green seaweed	0.54	Sheng <i>et al.</i> , 2004
Gracillaria sp.	Red seaweed	0.40	Sheng <i>et al.</i> , 2004
Thiobacillus	Bacteria	43.29	Liu <i>et al.</i> , 2004
thiooxidans			

Among micro-organisms, fungal biomass offers the advantages of having high percentage of cell wall material, which shows excellent metal binding properties (Gadd, 1990; Rosenberger, 1975; Paknikar, Palnitkar and Puranik, 1993). Many fungi and yeast have shown an excellent potential of metal biosorption, particularly the genera *Rhizopus*, *Aspergillus*, *Streptoverticullum* and *Sacchromyces* (Volesky and Tsezos, 1981; Galun *et al.*, 1984; de Rome and Gadd, 1987; Siegel *et al.*, 1986; Luef *et al.*, 1991, Brady and Duncan, 1993 Puranik and Paknikar, 1997).

2.0 Low cost adsorbents for metal removal

The disadvantages of using microorganisms can be overcome by using low cost adsorbents. In general, a sorbent can be assumed to be "low cost" if it requires little processing and is abundant in nature, or is a by product or waste material from another industry, which has lost its economic or further processing values. There have

been several low cost adsorbents that have been used for the removal of heavy metal. The following Section presents a detailed discussion on the low cost adsorbents that have been used for the removal of heavy metals.

Cost is an important parameter for comparing the sorbent materials. However, cost information is seldom reported, and the expense of individual sorbents varies depending on the degree of processing required and local availability. Research pertaining to low cost absorbents is gaining importance these days though most of the work is at laboratory levels. Some of the low-cost sorbents reported so far include: Bark/tannin-rich materials; lignin; chitin/chitosan; seaweed/algae/alginate; xanthate; zeolite; clay; flyash; peat moss; modified wool and modified cotton; tea waste; maize coen cob etc., efficacy of which are discussed next

2.1 Bark and other tannin – rich materials

Timber industry generates bark a by-product that is effective because of its high tannin content. The polyhydroxy polyphenol groups of tannin are thought the active species in the adsorption process. Ion exchange takes place as metal cations displace adjacent phenolic hydroxyl groups, forming a chelate (Randall *et al.*, 1974a; Vasquez *et al.*, 1994).

Another waste product from the timber industry is sawdust. Bryant *et al.* (1992) showed adsorption of Cu and hexavalent chromium (Cr (VI) by red fir sawdust to take place primarily on components such as lignin and tanin rather onto cellulose backbone of the sawdust (Table 4). While bark is the most likely choice due to its wide availability, other low cost byproducts containing tannin show promise for economic metal sorption as well.

 $Table\ 4\ Reported\ adsorption\ capacities\ (mg/g)\ for\ tannin\ containing\ materials$

Material	Source	Cd	Cr (III)	Cr (VI)	Hg	Pb
Activated carbonTeles de						2.95
	Vasconcelos and					
	Gonzàlez Beća,					
	1994					
Black oak bark	Masri <i>et al.</i> , 1974	25.9			400	153.3
Douglas fir bark Masri et al., 19					100	
Exhausted coffe	eOrhan and	1.48		1.42		
	Büyükgüngor,					
	1993					
Formaldehyde -	- Randall et al.,	74				205
polymerised	1978					
peanut skins						
Hardwickia	Deshkar et al.,	34				
binata bark	1990					
Nut shell	Orhan and	1.3		1.47		
	Büyükgüngor,					
	1993					
Pinus pinaster	Teles de	8.00	19.45			3.33, 1.59
bark	Vasconcelos and					
	Gonzàlez Beća,					
	1993, 1994 and					
	Vàzquez et al.,					
	1994					
Redwood bark	Masri <i>et al</i> 1974,	27.6, 32			250	6.8, 182
	Randall et al					
	1974a, b					
Sawdust	Bryant <i>et al.</i> , 1992	·,		10.1, 16.05,		
	Dikshit, 1989;			4.44		
	Zarraa, 1995					

Turkish coffee	Orhan and	1.17		1.63
	Buyukgungor,			
	1993			
Treated Pinus	Alves et al., 1993		9.77	
sylvestris bark				
Untreated Pinus	Alves et al., 1993		8.69	
sylvestris bark				
Walnut shell	Orhan and	1.5		1.33
	Buyukgungor,			
	1993			
Waste tea	Orhan and			
	Buyukgungor,	1.63		1.55
	1993			

2.2 Chitosan

Among various biosorbents, chitin is the second most abundant natural biopolymers after cellulose. However, more important than chitin is chitosan, which has a molecular structure similar to cellulose. Presently, chitosan is attracting an increasing amount of research interest, as it is an effective scavenger for heavy metals. Chitosan is produced by alkaline N-deacetylation of chitin, which is widely found in the exoskeleton of shellfish and crustaceans. It was estimated that chitosan could be produced from fish and crustaceans (Rorrer and Way 2002). The growing need for new sources of low-cost adsorbent, the increased problems of waste disposal, the increasing cost of synthetic resins undoubtedly make chitosan one of the most attractive materials for wastewater treatment.

Various researches on chitosan have been done in recent years and it can be concluded that chitosan is a good adsorbent for all heavy metals (Table 5). It is widely known that the excellent adsorption behaviour of chitosan for heavy metal removal is attributed to: (1) high hydrophilicity of chitosan due to large number of hydroxyl groups, (2) large number of primary amino groups with high activity, and (3) flexible structure of polymer chain of chitosan making suitable configuration for adsorption of metal ions.

Table 5 Reported adsorption capacities (m/g) for chitosan

Material	Source	Cd	Cr (III)Cr (VI) Hg	Cu	Pb
Chitin	Masri et al.,				100		
	1974						
Chitosan	Jha et al.,	6.4, 558	92	27.3	1123, 815		796
	1988; Masri						
	et al., 1974,						
	McKay et al.,						
	1989;						
	Udhaybhaska						
	r et al., 1990						
Chitosan (from lobster	Peniche-				430		
shell)	Covas et al.,						
	1992						
Chitosan powder	Rorrer et al.,	420					
	1993						
Chitosan beads	Rorrer et al.,	518					
	1993						
N-acylated chitosan	Hsien and	216					
beads	Rorrer, 1995						
N-acylated cross linked	l Hsien and	136					
chitosan beads	Rorrer, 1995						
Thiol-grafted chitosan	Merrifield, et				8.0 mmol/g	3	
gel	al., 2004						
Aminated chitosan	Jeon and.				2.23		
	Höll, 2003				mmol/g		
Chitosan derived from	Chu, 2002						0.266
prawn shells							mmol/g
Chitosan	Wan Ngah et					80.71	
	al., 2002						
Chitosan beads cross-	Wan Ngah et					59.67	
linked with	al., 2002						

glutaraldehyde		_
Chitosan beads cross-	Wan Ngah et	62.47
linked with	al., 2002	
epichlorohydrin		
Chitosan beads cross-	Wan Ngah et	45.62
linked with thylene	al., 2002	
glycol diglycidyl ether		

2.3 Zeolites

Basically zeolites are a naturally occurring crystalline aluminosilicates consisting of a framework of tetrahedral molecules, linked with each other by shared oxygen atoms. During 1970s, natural zeolites gained a significant interest, due to their ion-exchange capability to preferentially remove unwanted heavy metals such as strontium and cesium [Grant *et al.*, 1987]. This unique property makes zeolites favorable for wastewater treatment (Table 6). The price of zeolites depending on the quality is considered very cheap and is about US\$ 0.03–0.12/kg, [Virta, 2001].

Table 6 Reported adsorption capacities (mg/g) for zeolite

Material	Source	Cd	Cr (III)) Cr (VI)	Hg	Pb	Zn	Cu	
CETYL- amended zeolite	Santiago et al., 1992			0.65					
EHDDMA- amended zeolite	Santiago <i>et al.</i> , 1992			0.42					
Zeolite Clinoptilolite	,	84.3	26.0		150.4	155.4	133.85	41.10	1
zeolites	2004							41.12	

2.4 Clay

It is widely known that there are three basic species of clay: smectites (such as montmorillonite), kaolinite, and micas; out of which montmorillonite has the highest cation exchange capacity and its current market price is considered to be 20 times cheaper than that of activated carbon [Virta, 2002]. Therefore, a number of studies

have been conducted using clays, mainly montmorillonite, to show their effectiveness for removing metal ions such as Zn2+, Pb2+, and Al3+ from aqueous solutions (Brigatti *et al.*, 1996; Staunton and M. Roubaud, 1997 and Turner *et al.*, 1998) (Table 7). Although the removal efficiency of clays for heavy metals may not be as good as that of zeolites, their easy availability and low cost may compensate for the associated drawbacks.

Fly ash, an industrial solid waste of thermal power plants located in India, is one of the cheapest adsorbents having excellent removal capabilities for heavy metals such as copper ions (Panday *et al*, 1985). It was reported that an adsorption capacity of 1.39 mg of Cu2+/g was achieved by fly ash at a pH of 8.0. It is also known from various studies that fly ash could be easily solidified after the heavy metals are adsorbed. However, since it also contains heavy metals, the possibility of leaching could be considered and evaluated.

Table 7 Reported adsorption capacities (mg/g) for clays

Material	Source	Cd	Cr (VI)	Pb	Cu ²⁺ Hg ²⁺	Zn
Bentonite	Khan et al., 1995	;	0.512, 55	6		0.921
	Cadena et al., 1990);				
	Kaya and Ören, 2005					
Na rich bentonite	Kaya and Ören, 2005					8.271
Tailored bentonite	Cadena et al., 1990		57, 58			
Acid treate	dPradas et al., 1994	4.11				
bentonite						
Heat treate	dPradas et al., 1994	16.50				
bentonite						
China clay	Yadava et al., 1991			0.289		
Wollastonite	Yadava et al., 1991			0.217		
Wallastonite-fly as	hPanday et al., 1984a		2.92		1.18	
mixture						
Fly ash	Panday et al., 1985; Ser	n			1.39	
	and Arnab					
Fly ash-China clay	Panday et al., 1984a		0.31			
Palygorskite clay	Potgieter, et al., 2005		58.5	62.1	30.7	
Fly ash	Cho et al, 2005		5.0	10.0	2.8	3.2

2.5 Peat moss

Peat moss, a complex soil material containing lignin and cellulose as major constituents, is a natural substance widely available and abundant, not only in Europe (British and Ireland), but also in the US. Peat moss has a large surface area (>200

m2/g) and is highly porous so that it can be used to bind heavy metals. Peat moss is a relatively inexpensive material and commercially sold at US\$ 0.023/kg in the US [Jasinski, 2001]. Peat moss is a good adsorbent for all metals (Table 8). It is widely known that peat moss exhibited a high CEC and complexities towards metals due to the presence of carboxylic, phenolic, and hydroxylic functional groups.

Table 8 Reported adsorption capacities (mg/g) for peat moss

Material	Source C	d	Cr (III) Cr (VI)	Hg	Cu	Pb
Irish sphagnum	Sharma and Forster,		119.0, 43.9			
moss peat	1993, 1995					
Modified peat	Kertman et al., 1993		76			230
Rastunsuo peat	Tummavuori and Aho, 5.	.058	4.63	16.2		20.038
	1980a, b					
Sphagnum moss	McLelland and Rock, 5.	.8	29			40
peat	1988					
Sphagnum peat	Fattahpour Sedeh et				40	
	al., 1996					
Carex peat	Fattahpour Sedeh et				24 to	
	al., 1996				33	

2.6 Industrial waste

Several industrial by-products have been used for the adsorption of heavy metals. Table 9 summarises some of the industrial wastes.

Table 9 Adsorption capacities of industrial waste (mg/g)

Material	Sources	Ni ²⁺	2±	Hg ²⁺	Cr ⁶⁺	Zn ²⁺	Cd ²⁺	Cu ²⁺
			Pb^{2+}					
Waste slurry	Srivastava et al., 1985		1030	560	640			
	Lee and Davis, 2001						15.73	20.97
Iron (III) hydroxide	Namasivayam and				0.47			
	Rangnathan, 1992							
Lignin	Aloki and Munemori, 1982		1865			95		
Blast furnace slag	Srivastava et al., 1997		40		7.5			
Sawdust	Ajmal et al., 1998							13.80
Activated red mud	Zouboulis and Kydros,	160						
	1993							
	Pradhan et al., 1999				1.6			
Bagasse fly ash	Gupta et al., 1999				260			

2.7 Miscellaneous Adsorbents

Table 10 lists some of the miscellaneous adsorbents used for the removal of heavy metals.

Table 10 Reported adsorption capacities (mg/g) for several miscellaneous sorbents

Material	Source	Cd	Cr	Hg	Pb	Ni	Zn	Cu
Dry pine	Masri et al.,			175				
needles	1974							
Dry redwood	Masri <i>et al.</i> ,			175				
leaves	1974			15 (1.5			
Dyed	Shukla and			15.6	15			
bamboo pulp (C.I.	Sakhardande, 1992							
Reactive	1772							
orange 13)								
Undyed	Shukla and			9.2	8.4			
bamboo pulp	Sakhardande,							
	1992							
Dyed jute	Shukla and			13.7	14.1			
(C.I.	Sakhardande,							
Reactive	1992							
orange 13	01 11 1			7.6	7.0			
Undyed jute	Shukla and			7.6	7.9			
	Sakhardande, 1992							
Dyed	Shukla and			18.0	24.0			
sawdust (C.I.	Sakhardande,			10.0	21.0			
Reactive	1992							
orange 13)								
Undyed	Shukla and			8.5	7.3			
sawdust	Sakhardande,							
	1992							
Milogranite	Masri <i>et al.</i> ,			460	95.3			
`	1974							
-								
- /	Masri and	87	17	632	135			
		07	1 /	032	133			
	•	46.5						
	1991							
Orange peel	Masri et al.,		12					
(white inner	1974		5					
skin)			_					
	-							
PEI WOOI								
	19/4		0.9 7					
(white inner	Masri et al.,	87 46.5		632	135			

Senna leaves	Masri <i>et al</i> ., 1974		25 0					
Unmodified jute	Shukla and Pai, 2005					3.37	3.55	4.23
Modified jute	Shukla and Pai, 2005					5.57	8.02	7.73
Papaya wood	Saeed <i>et al.</i> , 2005	17.35					14.44	19.99
Activated carbon from apricot stone	Kobya <i>et al.</i> , 2005	3.08	34. 70		6.69	2.50		4.86
Lignocellulos ic fibres – unmodified	Shukla <i>et al.</i> , 2005					7.49	7.88	
Lignocellulos ic fibres oxidised with hydrogen peroxide	Shukla <i>et al.</i> , 2005					2.51	1.83	
Carbon aerogel	Meena <i>et al.</i> , 2005	400.8		45.62	0.70	12.8 5	1.84	561.71
Dye loaded groundnut shells	Shukla and Pai, 2005					9.87	17.09	8.07
Unloaded sawdust	Shukla and Pai, 2005					8.05	10.96	4.94
Siderite	Erdem and Özverdi, 2005				14.06			
Diatomite	Khraisheh, 2004	16.08			24.94			27.55
Manganese treated diatomite	Khraisheh, 2004	27.08			99.00			55.56
Wheat shell	Basci <i>et al.</i> , 2004							10.84
Wheat bran	Farajzadeh et al., 2004	21	93	70	62	12		15
Tea industry waste	Cay <i>et al.</i> , 2004	11.29						8.64
Sawdust of P. sylvestris	Taty-Costodes, et al., 2003	19.08			22.22			
Cork biomass	Chubar <i>et al.</i> , 2003					0.34 meq. /g	0.76 meq/g	0.63 meq/g
Cocoa shells	Meunier <i>et al.</i> , 2003				6.2	Č		
Vermicompo st	Matos and Arruda, 2003	33.01			92.94		28.43	32.63
Peanut hulls	Johnson <i>et al.</i> , 2002							9

Peanut	Johnson et al							12
pellets	Johnson <i>et al.</i> , 2002							12
poly(ethylene	Kesenci <i>et al.</i> ,	0.370		0.270	1.825			
glycol	2002	mmol		mmol/	mmol/			
dimethacrylat		/g		g	g			
e-co-								
acrylamide)								
beads	D: 1.1/1	40.07					1.4.0	
Activated	Dinesh Mohan	49.07					14.0	
carbon derived from	and Kunwar P.							
bagasse	Singh, 2002							
Polyacrylami	Manju et al.,	151.4		163.21	218.53			
de-grafted	2002	7		100.21	210.00			
iron(III)								
oxide								
Carboxylated	Jeon et al.,				3.09			
alginic acid	2002				mmol/			
Petiolar felt	Iabal at al	10.8	5.3		g 11.4	6.89	5.99	8.09
sheath of	Iqbal <i>et al</i> ., 2002	10.6	2		11.4	0.89	3.99	8.09
palm	2002		2					
Sheep	Munther						13.8	
manure waste	Kandah, 2001							
Peanut husk	Ricordel et al.,	0.45			0.55	0.28	0.20	
carbon	2001							
Kudzu	Brown et al.,	15					35	32
(Pueraria	2001							
lobata ohwi) Turkish coal	Arpa et al.,	0.008		0.039	0.041			
i ui kisii coai	2000	mmol		mmol/	mmol/			
	2000	/g		g g	g			
Peanut hulls	Brown et al.,	6		8	30		9	8
	2000							
Peanut hull	Brown et al.,	6			30		10	10
pellets	2000							
Commercial	Brown et al.,	50					90	85
grade ion	2000							
exchange Resin								
Carrot	Nasernejad et		45.				29.61	32.74
residue	al., 2005		09				2 7.01	J., I
	,		- /					

The results of many biosorption studies vary widely because of the different criteria used by the authors in searching for suitable materials. Some researchers have used easily available biomass types, others specially isolated strains, and some processed the raw biomass to different extents to improve its biosorption properties. In the

absence of uniform technology, results have been reported in different units and in many different ways, making quantitative comparison impossible.

Certain waste products, natural materials and biosorbents have been tested and proposed for metal removal. It is evident from the discussion so far that each low-cost adsorbent has its specific physical and chemical characteristics such as porosity, surface area and physical strength, as well as inherent advantages and disadvantages in wastewater treatment. In addition, adsorption capacities of sorbents also vary, depending on the experimental conditions. Therefore, comparison of sorption performance is difficult to make. However, it is clear from the present literature survey that non-conventional adsorbents may have potential as readily available, inexpensive and effective sorbents for both heavy metals. They also possess several other advantages that make them excellent materials for environmental purposes, such as high capacity and rate of adsorption high selectivity for different concentrations, and also rapid kinetics. There is a need to look for viable non-conventional low-cost adsorbents to meet the growing demand due to the enhanced quantum of heavy metals in the environment, despite the number of published laboratory data.

3.0 Objectives of the Present Study

The effluent treatment in developing countries is expensive and major cost is associated with the dependence on imported technologies and chemicals. The indigenous production of treatment techniques and chemicals locally, or use locally available non-conventional materials to treat pollutants seems to be the solution to the increasing problem of treatment of effluents. In this regard, there has been a focus on the use of appropriate low cost technology for the treatment of wastewater in developing countries in recent years. Technically feasible and economically viable pretreatment procedures with suitable biomaterials based on better understanding of the metal biosorbent mechanism(s) are gaining importance. Activated carbon of agricultural waste products as low cost adsorbents has been reported till now. However, there is an additional cost involved in the processing of the agricultural wastes to convet the same to activated carbon, which is posing economic difficulties necessitating research on alternate adsorbents with equivalent potential of activated carbon.

The objective of the present research is to find out the adsorption capacity of the four husks namely Tur dal (*Cajanus cajan*) husk (TDH); bengal gram husk (BGH), seed coat of *Cicer arientinum*; coffee (*Coffee arabica*) husk (CH) and tamarind (*Tamarindus indica*) pod shells (TH) for the removal of heavy metals from aqueous solutions so as to facilitate comparison with other adsorbents and provide a sound basis for further modification of the adsorbent to improve its efficiency.

The four adsorbents chosen for the present study is available in plenty in tropical regions. Adsorption properties of these adsorbents have not yet been reported in literature. The adsorbents in the present study were tested for their adsorption capacity on the four heavy metals namely chromium (VI), iron (III), mercury (II) and nickel (II).

Exploratory studies reveal that lakes of Bangalore are contaminated with heavy metals chromium (VI), iron (III), mercury (II) and nickel (II). Growing problem of water and soil contamination due to untreated effluents has neessitated to focus on these heavy metals in the current endeavour. The heavy metals have proven to be hazardous not only for human life, but also to the aquatic flora and fauna, requiring remedaition of the heavy metals through biosorption using low cost adsorbents.

Keeping these environmental, ecological and societal health issues in view, it is considered necessary to attempt and provide an easy, feasible, economical and reliable method for the removal of heavy metals. Hence, adsorption by locally available, environmentally-friendly and cost effective adsorbents have been explored and exploited. The objective is achieved through:

- 1) Characterisation of the adsorbents for their carbon, nitrogen and sulphur content
- 2) Characterisation of functional groups on the surface of the adsorbent that contributes to the biosorption of heavy metals used in the present study through infrared spectroscopy.
- 3) Determination of the agitation/equilibrium time, pH and effect of adsorbent at different initial metal concentrations.

- 4) Calculation of the adsorption capacity and intensity using Langmuir and Freundlich isotherm models,
- 5) Desorption of metals from metal loaded adsorbents to determine the mechanism of adsorption.
- 6) Comparison between the adsorbents for their adsorption capacity with those found in literature.

4.0 Materials and Methods

In this Section methods for using viable non-conventional low-cost adsorbents like tur dal husk (TDH); bengal gram husk (BGH), coffee husk (CH) and tamarind husk (TH) for removal of metals such as chromium (VI), iron (III), mercury (II) and nickel (II) are discussed.

4.1 Materials

Tur dal (*Cajanus cajan*) husk (TDH) and bengal gram (*Cicer arientinu*) husk (BGH), was collected from a legume seed-splitting mill. The coffee husk (CH) was collected from coffee processing unit and tamarind pod shells (TH) were obtained from a dehulling unit. The four husks were washed extensively in running tap water to remove dirt and other particulate matter. This was later subjected to colour removal through washing and boiling in distilled water repeatedly. Subsequently the husks were oven dried at 105°C for 24 hours, stored in a desiccator and used for biosorption studies in the original piece size.

4.2 Preparation of Adsorbate Solutions

Metal solutions

• Iron [Fe (III)] solution: An aqueous stock solution (1000mg/l) of Fe (III) ions was prepared using Ferrous ammonium salt as follows: 7.022 g of crystallized ferrous ammonium sulphate was dissolved in 500 ml of water and 50 ml of 1:1 sulphuric acid was added. The solution was warmed and oxidized with approximately 0.1% potassium permanganate solution until the solution remained faintly pink. The solution was diluted and made upto 11. The pH of

the solution was adjusted using 0.1N HCl or NaOH. Fresh dilutions were used for each study.

- **Chromium [Cr (VI)] solution:** A stock solution of 1000 mg/l of Cr (VI) was obtained by dissolving 3.734 g of Potassium dichromate in 1 l of distilled water. To this is added 5 ml of HNO₃
- **Nickel [Ni (II)] solution:** Dissolved 4.477 g of nickel sulphate in 1000ml of distilled water to this is added 5 ml of 1:1 HNO₃
- Mercury [Hg (II)] solution: A stock solution of 1000mg/l of Hg (II) was prepared by dissolving 1.354 g of mercuric chloride in 700 ml of distilled water. Added 10 ml of concentrated nitric acid and diluted to 1000ml.

4.3 Determination of Carbon, Nitrogen and Sulphur in the four husks

Total carbon, nitrogen and sulphur were determined, in order to understand the metal binding mechanisms of four agricultural byproducts. Elemental analysis was carried out with a C.H.N. 1106 Carlo Erba MicroAnalysing device equipped with inductive furnace analyzer. Samples of the four husks were put in an oven at 1000°C under oxygen in order to obtain a quick and complete combustion. N₂, H₂O and CO₂ were released and conducted in a copper oven at 650°C, then passed through a 2 m column with helium vector gas, and analyzed by a catharometer detector.

4.4 Infrared spectroscopic analysis

FT-IR spectra of the four adsorbents namely BGH, TDH, CH and TH were obtained using shimadzu, Model FTIR – 8201PC. The infrared spectral analysis was done to determine the functional groups responsible for the adsorption of metals. As chemical bonds absorb infrared energy at specific frequencies (or wavelengths), the basic structure of compounds can be determined by the spectral locations of their IR absorptions. The plot of a compound's IR transmission vs. frequency is its "fingerprint", which when compared to reference spectra identifies the material.

4.5 Analysis of adsorbates

Estimation of metals: The metals were estimated using standard methods as described in literature (Snell and Snell, 1961; Eaton et al., 1995). Iron as Fe (III) was determined spectrophotometrically at 530 nm after complexation with sodium

salicylate (Snell and Snell, 1961). Chromium as Cr (VI) was determined spectrophotometrically at 540 nm after complexation with 1, 5 diphenylcarbazide (Eaton et al., 1995). The residual concentration of nickel was determined spectrophotometrically after complexation with dimethylglyoxime at 440 nm (Snell and Snell, 1961). Mercury (II) was estimated by the di-beta-naphthylthiocarbazone method at 515 nm as described by Snell and Snell, 1961.

4.6 Batch mode adsorption studies

Batch mode adsorption studies for individual metal compounds were carried out to investigate the effect of different parameters such as adsorbate concentration, adsorbent dose, agitation time and pH. Solution containing adsorbate and adsorbent was taken in 250 mL capacity beakers and agitated at 150 rpm in a mechanical shaker at predetermined time intervals. The adsorbate was decanted and separated from the adsorbent using Whatman No.1 filter paper. To avoid the adsorption of adsorbate on the container walls, the containers were pretreated with the respective adsorbate for 24 hours.

4.6.1 Effect of agitation time

For the determination of rate of metal biosorption by BGH, TDH, TH and CH from 100 ml (at 10, 20, 50, 100 mgL⁻¹), the supernatant was analysed for residual metal at different time intervals. The pH and the adsorbent dosage was kept constant, which varied according to the adsorbent and adsorbate under consideration.

4.6.2 Effect of adsorbent dosage

The effect of adsorbent dosage i.e., the amount of the four husks on the adsorption of metals was studied at different dosages ranging from 1 to 40 g/l with varied metal concentrations of 10, 20, 50 and 100 mg/L. The equilibrium time and the pH were kept constant depending on the metal under consideration.

4.6.3 pH effect

To determine the effect of pH on the adsorption of metal solutions (100 mL) of different concentration ranges (0-100 mgL⁻1) were adjusted to desired pH values and mixed with known weight of adsorbent and agitated at preset equilibrium time. The

equilibrium time and adsorbent dosage varied with the metal and adsorbent under consideration.

4.6.4 Desorption studies

After adsorption, the adsorbates – loaded adsorbent were separated from the solution by centrifugation and the supernatant was drained out. The adsorbent was gently washed with water to remove any unadsorbed adsorbate. Regeneration of adsorbate from the adsorbate – laden adsorbent was carried out using the desorbing media – distilled water at pH ranges 4.0 to 12.0 using dilute solutions of NaOH and HCl. Then they were agitated for the equilibrium time of respective adsorbate. The desorbed adsorbate in the solution was separated and analyzed for the residual heavy metals.

5.0 Results

This Section presents the results obtained from the batch studies of biosorption of metals by the four agricultural by products namely bengal gram husk, coffee husk, tur dal husk and tamarind husk. The metals studied include chromium (VI), iron (III), mercury (II) and nickel (II).

5.1 Characteristics of the Adsorbent

The approximate percentages of total carbon, nitrogen and hydrogen in the four husks are shown in Table 11. The greater percentage of carbon content in all the four husks reveal that carbon compounds might be responsible for adsorption of heavy metals [Chromium (VI), Mercury (II), Iron (III) and Nickel (II)]. The protein content is less in all the four husks, as revealed by low nitrogen values. The approximate percentages of total carbon, nitrogen and hydrogen in the four husks are listed in Table 11.

Table11 Percentage content of carbon, hydrogen and nitrogen in the four husks

Adsorbent	Carbon	Hydrogen	Nitrogen
Bengal gram husk	38.57	6.31	0.86
Tur dal husk	40.66	6.35	1.13
Coffee husk	45.33	6.21	0.63
Tamarind husk	46.01	6.14	0.94

5.2 Infrared spectroscopic studies

Unreacted samples of BGH, TDH, TH and CH were subjected to Fourier transform infrared spectroscopy and the percentage transmissions for various wavenumbers are presented in Figures 3 to 6 respectively. The absorption bands identified in the spectra and their assignment to the corresponding functional groups are discussed in detail in the discussion section.

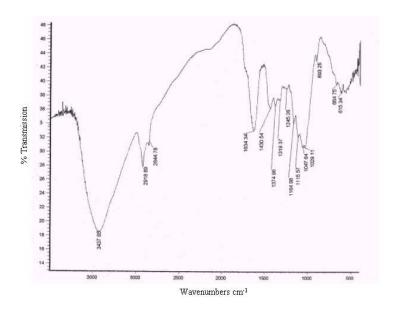


Figure 2 Infrared spectra of BGH

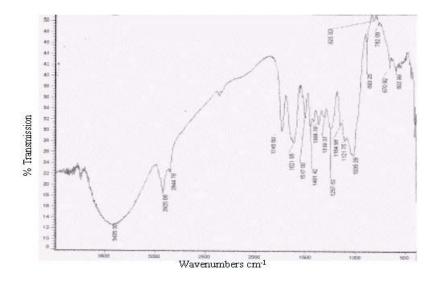


Figure 3 Infrared spectra of TDH

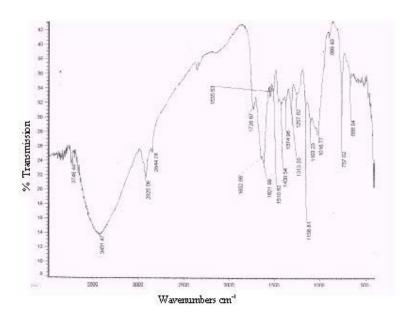
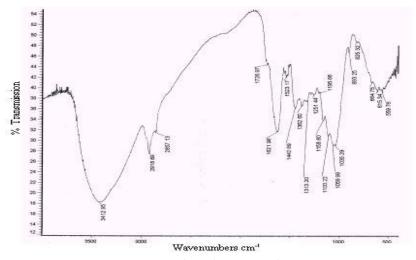
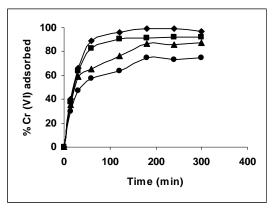


Figure 4 Infrared spectra of CH




Figure 5 Infrared spectra of TH

5.3 Batch mode adsorption studies

5.3.1 Effect of agitation time

Results on the agitation time of chromium (VI) at different initial metal ion concentrations by bengal gram husk, tur dal husk, coffee husk and tamarind husk in Tables 12 to 15 and Figures 6 to 9. Tables 16-19 and Figures 10 to 13 present the results of agitation time of Iron (III) by bengal gram husk; tur dal husk; coffee husk and tamarind husk Similarly, Figures 14 to 17 and Tables 20 to 23 represent the agitation time of adsorption of mercury (II). Adsorption of nickel (II) by the various husks is given in Figures 18 to 21 and Tables 24 to 27.

The time required to reach equilibrium for chromium (VI) adsorption by BGH is 180 minutes for all initial metal ion concentrations. The time taken for Cr (VI) adsorption by TDH, TH and CH was dependent on initial metal ion concentration and increased with increase in concentration of Cr (VI). The biosorption of iron by all the four husks were dependent on initial metal ion concentration. Similar results were obtained for the adsorption of mercury and nickel. The amount of metal ions adsorbed increased with increase in initial metal ion concentration. Most of the metal ions at all initial concentrations were optimally adsorbed within 180 to 200 minutes of contact between the husks and metals. For all the metal ions, tur dal husk exhibited the maximum uptake (mg of metal/g of adsorbent) and the order of adsorption among the metals in increasing order are mercury >chromium>iron>nickel. For BGH, it was nickel> chromium>iron>mercury. CH exhibited maximum removal of mercury followed by chromium, nickel and iron. Tamarind husk was efficient in biosorption of mercury followed by nickel, chromium and iron.

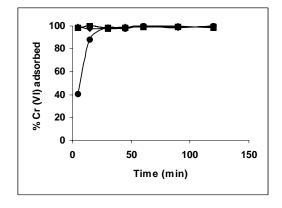
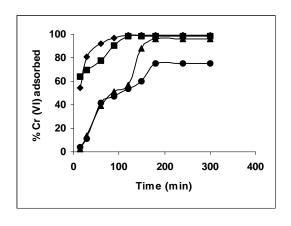



Figure: 6

Figure: 7

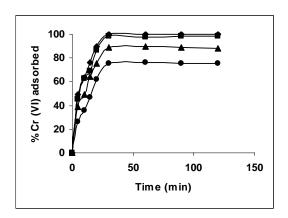
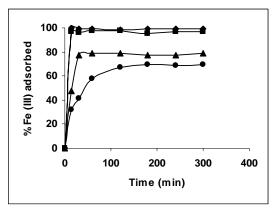



Figure: 8

Figure: 9

Figure 6-9 Effect of agitation time on the Chromium biosorption by BGH, TDH, CH and TH respectively (◆ 10 mg/L ■ 20 mg/L ▲ 50 mg/L ● 100mg/L)

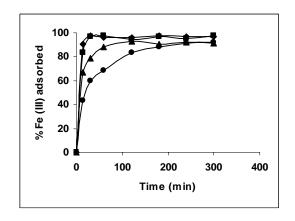
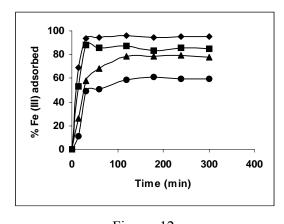
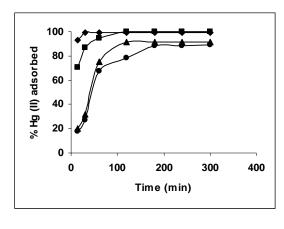



Figure: 10

Figure: 11



Time (min)

Figure: 12

Figure: 13

Figure 10-13 Effect of agitation time on the Iron biosorption by BGH, TDH, CH and TH respectively (\blacklozenge 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L \blacklozenge 100mg/L)

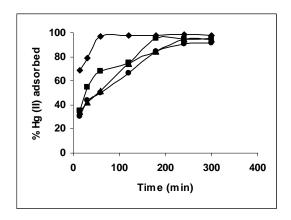
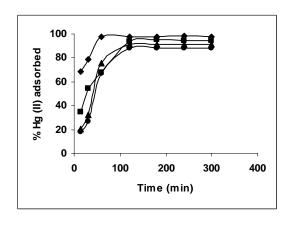



Figure: 14

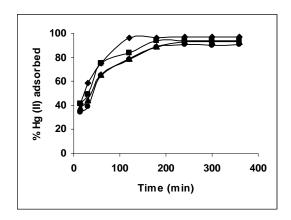
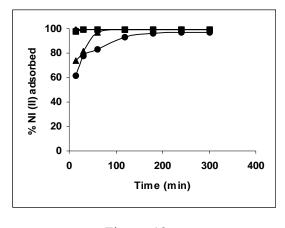



Figure: 16

Figure: 17

Figure 14-17 Effect of agitation time on the Mercury biosorption by BGH, TDH, CH and TH respectively (\bullet 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L \bullet 100mg/L)

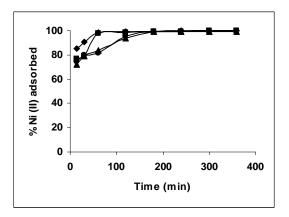
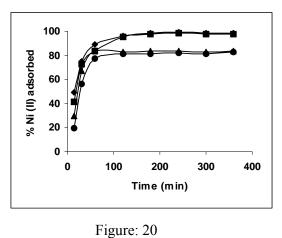



Figure: 18

Figure: 19

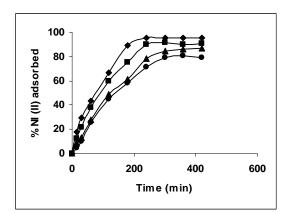


Figure: 21

Figure 18-21 Effect of agitation time on the Nickel biosorption by BGH, TDH, CH and TH respectively (\bullet 10 mg/L \blacksquare 20 mg/L \triangle 50 mg/L \bullet 100mg/L)

Table 12 Effect of agitation time and initial metal concentration on Chromium adsorption by bengal gram husk (Adsorbent dose = 0.2 g/100mL)

Agitation time (min)		10 mg/L		Agitation time		20 mg/L	
	% adsorbed	Cr (VI) adsorbed (mg/g)	qe-q	(min)	% adsorbed	Cr (VI) adsorbed (mg/g)	qe-q
5	28.23	1.41	3.54	5	25.68	2.56	6.79
15	44.12	2.20	2.75	15	39.19	3.91	5.44
30	69.9	3.49	1.46	30	64.19	6.41	2.94
60	87.45	4.37	0.58	60	82.29	8.22	1.13
120	90.56	4.52	0.43	120	89.84	8.98	0.37
180	98.74	4.93		180	93.52	9.35	
240	98.24	4.91		240	92.88	9.28	
300	99.87	4.99		300	93.30	9.33	
360	99.12	4.95		360	92.56	9.25	
		Qe = 4.95				Qe=9.35	
Agitation time (min)		50 mg/L		Agitation time		100 mg/L	
,				(min)			
	% adsorbed	Cr (VI) adsorbed (mg/g)	qe-q		% adsorbed	Cr (VI) adsorbed (mg/g)	qe-q
5	22.56	5.64	15.8 6	5	18.23	9.11	28.39
15	35.45	8.86	12.6 4	15	30.12	15.06	22.44
30	58.78	14.69	6.81	30	47	23.5	14
60	65	16.25	5.25	60	57.85	28.92	8.58
120	76.35	19.08	2.42	120	64.02	32.01	5.49
180	86.52	21.63	0.13	180	75.08	37.54	
240	86.2	21.5		240	73.51	36.7	
300	87.21	21.80		300	74.59	37.29	
360	86.21	21.55		360	74.23	37.11	
		Qe = 21.5				Qe = 37.5	

Table 13 Effect of agitation time and initial metal concentration on Chromium adsorption by Tur dal husk (Adsorbent dose = 0.2 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	%	Cr (VI)	qe-q	(min)	%	Cr (VI)	qe-q
	adsorbed	adsorbed	qc-q		adsorbed	adsorbed	qc-q
	uasoroca	(mg/g)			aasoroca	(mg/g)	
5	97.7	4.88	0.11	5	97.6	9.76	0.14
15	99.62	4.98	-	15	98.86	9.88	0.02
30	99.62	4.98		30	99.24	9.92	
45	99.89	4.99		45	99.33	9.93	
60	99.99	4.99		60	99.33	9.93	
90	99.8	4.99		90	99.24	9.92	
120	99.8	4.99		120	99.07	9.90	
	Qe=4.99					Qe=9.90	
Agitation		50 mg/L		Agitation		100 mg/L	
time		J		time		O .	
(min)				(min)			
	%	Cr (VI)	qe-q		%	Cr (VI)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	99.49	24.87		5	41.09	20.54	28.93
15	99.12	24.78		15	89.63	44.81	4.66
30	99.37	24.84		30	98.37	49.18	0.29
45	99.49	24.87		45	98.6	49.3	
60	99.62	24.90		60	98.71	49.35	
90	99.24	24.81		90	98.48	49.24	
120	98.99	24.74		120	98.95	49.47	
		Qe = 24.9				Qe=49.3	

Table 14 Effect of agitation time and initial metal concentration on Chromium adsorption by Coffee husk (Adsorbent dose = 0.5 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time (min)				time (min)			
	%	Cr (VI)	qe-q		%	Cr (VI)	qe-q
	adsorbe	adsorbed			adsorbed	adsorbed	
	d	(mg/g)				(mg/g)	
5	37.85	0.757	1.223	5	38.42	1.53	2.42
15	54.16	1.08	0.9	15	64.19	2.56	1.39
30	80.83	1.61	0.37	30	69.75	2.79	1.16
60	91.66	1.83	0.15	60	77.77	3.11	0.84
90	96.66	1.93	0.05	90	90.12	3.60	0.35
120	99.16	1.98	-	120	98.76	3.95	
150	99.16	1.98		150	98.38	3.93	
180	99.16	1.98		180	98.76	3.95	
240	99.16	1.98		240	98.76	3.95	
		Qe = 1.98				Qe=3.95	
Agitation		50 mg/L		Agitation		100 mg/L	
time (min)				time (min)			
	%	Cr (VI)	qe-q		%	Cr (VI)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	1.38	0.138	9.46	5	1.25	0.25	14.65
15	2.52	0.252	9.34	15	4.026	0.80	14.1
30	13.29	1.32	8.28	30	10.95	2.19	12.71
60	39.09	3.90	5.7	60	41.27	8.25	6.65
90	51.1	5.11	4.49	90	46.97	9.39	5.57
120	57.04	5.70	3.9	120	53.24	10.64	4.26
150	88.16	8.81	0.79	150	59.95	11.99	2.97
180	96.01	9.60		180	74.94	14.98	
240	96.01	9.60		240	74.83	14.96	
		Qe = 9.60				Qe=14.9	

Table 15 Effect of agitation time and initial metal concentration on Chromium adsorption by Tamarind husk. (Adsorbent dose = 0.35 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	0/	C. (VII)		(min)	0/	C. (M)	
	% adsorbed	Cr (VI) adsorbed	qe-q		% adsorbed	Cr (VI) adsorbed	qe-q
	ausoroeu	(mg/g)			ausoroeu	(mg/g)	
5	49.45	1.41	1.44	5	45.12	2.57	3.02
10	63.45	1.81	1.04	10	62.4	3.56	2.03
15	76.26	2.18	0.68	15	69.36	3.96	1.63
20	89.7	2.56	0.29	20	86.21	4.92	0.67
30	99.89	2.85		30	98.52	5.62	
60	99.69	2.85		60	97.96	5.59	
90	99.92	2.85		90	98.23	5.61	
120	99.9	2.85		120	98.67	5.63	
		Qe=2.85				Qe = 5.6	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Cr (VI)	qe-q		%	Cr (VI)	qe-q
	adsorbed	adsorbed (mg/g)			adsorbed	adsorbed (mg/g)	
5	38.65	5.52	7.18	5	26.35	7.53	13.97
10	49.21	7.03	5.67	10	35.42	10.12	11.38
15	64.3	9.18	3.51	15	46.55	13.30	8.20
20	75.15	10.73	1.96	20	62.29	17.80	3.70
30	88.95	12.70		30	75.26	21.50	
60	89.32	12.76		60	76.12	21.75	
90	88.65	12.66		90	75.6	21.60	
120	88.39	12.62		120	75.24	21.50	
		Qe = 12.7				Qe=21.50	

Table 16 Effect of agitation time and initial metal concentration on Iron adsorption by bengal gram husk (Adsorbent dose = 0.25 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time (min)				time (min)			
(******)	%	Fe(III)	qe-q	(11111)	%	Fe(III)	qe-q
	adsorb	adsorbed			adsorb	adsorbed	1 1
	ed	(mg/g)			ed	(mg/g)	
15	99.8	3.99		15	96.64	7.73	
30	99.35	3.97		30	96.25	7.7	
60	99.12	3.96		60	97.27	7.78	
120	98.78	3.95		120	97.62	7.80	
180	99.45	3.97		180	95.54	7.64	
240	99.21	3.96		240	96.7	7.73	
300	99.5	3.98		300	97.2	7.77	
		Qe=3.98				Qe=7.73	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Fe (III)	qe-q		%	Fe (III)	qe-q
	adsorb	adsorbed			adsorb	adsorbed	
	ed	(mg/g)			ed	(mg/g)	
15	47.27	9.45	6.31	15	31.86	12.74	15
30	77.57	15.51	0.25	30	41.5	16.6	11.14
60	78.78	15.76		60	57.67	23.06	4.68
120	78.78	15.76		120	67.15	26.86	0.88
180	76.96	15.39		180	69.37	27.74	
240	77.57	15.51		240	69.05	27.62	
300	78.78	15.76		300	69.54	27.81	
		Qe=17.76				Qe=27.74	

Table 17 Effect of agitation time and initial metal concentration on Iron adsorption by Tur dal husk (Adsorbent dose = 0.25~g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	%	Fe(III)	qe-q	(min)	%	Fe(III)	ae a
	adsorbed	adsorbed	qc-q		adsorbed	adsorbed	qe-q
	uasoroca	(mg/g)			uasoroca	(mg/g)	
5	82.21	3.28	0.63	5	78.56	6.28	1.45
15	90.81	3.63	0.28	15	83.69	6.69	1.04
30	97.95	3.91		30	96.73	7.73	
60	96.32	3.85		60	97.82	7.82	
120	96.12	3.84		120	94.56	7.56	
180	97.95	3.91		180	96.73	7.73	
240	96.93	3.87		240	95.65	7.65	
300	96.93	3.87		300	97.82	7.82	
		Qe=3.91				Qe=7.73	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Fe (III)	qe-q		%	Fe (III)	qe-q
	adsorbe	adsorbed			adsorbe	adsorbed	
~	d	(mg/g)	6.06	-	d	(mg/g)	22.5
5	58.26	11.65	6.86	5	32.65	13.06	23.5
15	67.28	13.45	5.06	15	42.95	17.18	19.38
30	78.39	15.67	2.84	30	59.45	23.78	12.78
60	88.27	17.65	0.86	60	68.72	27.48	9.08
120 180	92.59 90.74	18.51		120 180	83.16 87.97	33.26	3.3
240	90.74 91.97	18.14 18.39		240	87.97 91.4	35.18 36.56	1.38
300	91.97	18.39		300	91.4	36.97	
300	91.33	Qe=18.51		300	94. 4 3	Qe=36.56	
		QC-10.31				QC-30.30	

Table 18 Effect of agitation time and initial metal concentration on Iron adsorption by coffee husk (Adsorbent dose = 0.25 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	%	E ₂ (III)	a. a	(min)	%	E ₂ (III)	aa a
	adsorbed	Fe(III) adsorbed	qe-q		adsorbed	Fe(III) adsorbed	qe-q
	ausorocu	(mg/g)			ausorocu	(mg/g)	
5	54.29	2.17	1.57	5	45.37	3.62	3.43
15	69	2.76	0.98	15	52.94	4.23	2.82
30	93.56	3.74		30	88.23	7.05	
60	94.23	3.76		60	85.88	6.87	
120	95.66	3.82		120	87.05	6.96	
180	94.68	3.78		180	83.52	6.68	
240	95.06	3.80		240	85.88	6.87	
300	95.45	3.81		300	84.7	6.77	
		Qe=3.74				Qe=6.87	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Fe (III)	qe-q		%	Fe (III)	qe-q
	adsorbed	adsorbed (mg/g)			adsorbed	adsorbed (mg/g)	
5	16.48	3.29	12.46	5	5.29	2.11	21.46
15	25.9	5.18	10.57	15	10.78	4.31	19.26
30	58.03	11.60	4.15	30	49.47	19.78	3.79
60	68.39	13.67	2.08	60	50.78	20.31	3.26
120	78.75	15.75		120	58.94	23.57	
180	78.23	15.64		180	61.05	24.42	
240	79.27	15.85		240	59.47	23.78	
300	77.72	15.54		300	59.21	23.68	
		Qe=15.7				Qe=23.5	

Table 19 Effect of agitation time and initial metal concentration on Iron adsorption by Tamarind husk (Adsorbent dose = 0.35~g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time (min)				time (min)			
()	%	Fe(III)	qe-q	()	%	Fe(III)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	41.56	1.18	1.66	5	33.3	1.90	3.68
15	55.36	1.58	1.26	15	48.27	2.75	2.83
30	86.32	2.46	0.38	30	72.41	4.13	1.45
60	99.5	2.84		60	97.7	5.58	
120	98.65	2.81		120	96.55	5.51	
180	99.01	2.82		180	95.4	5.45	
240	98.62	2.81		240	96.55	5.51	
		Qe=2.84				Qe=5.58	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Fe (III)	qe-q		%	Fe (III)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	5.8	0.82	10.63	5	4.46	1.27	13.09
15	28.33	4.04	7.41	15	18.98	5.42	8.94
30	53.33	7.61	3.84	30	26.47	7.56	6.8
60	66.31	9.47	1.98	60	39.03	11.15	3.21
120	80.21	11.45		120	50.26	14.36	
180	81.81	11.68		180	50	14.28	
240	80.74	11.53		240	51.06	14.58	
		Qe=11.45				Qe=14.3	

Table 20 Effect of agitation time and initial metal concentration on Mercury adsorption by bengal gram husk (Adsorbent dose = 0.5 g/100mL)

Agitation time	10 mg/L			Agitation time	20 mg/L		
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	85.31	1.70	0.2	5	62.14	2.48	1.51
15	93.37	1.86	0.04	15	70.57	2.82	1.17
30	99.61	1.99		30	86.92	3.47	0.52
60	99.02	1.98		60	94.7	3.78	0.21
120	99.41	1.98		120	99.77	3.99	
180	99.22	1.98		180	99.77	3.99	
240	99.61	1.99		240	99.67	3.98	
300	99.41	1.98		300	99.77	3.99	
		Qe=1.99				Qe=3.99	
Agitation	50 mg/L			Agitation	100 mg/L		
time				time			
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbe	adsorbed			adsorbed	adsorbed	
	d	(mg/g)				(mg/g)	
5	11.35	1.13	7.99	5	6.75	1.53	16.09
15	20.44	2.04	7.08	15	18	3.6	14.02
30	31.89	3.18	5.94	30	27.16	5.43	12.19
60	75.23	7.52	1.6	60	67.2	13.44	4.18
120	91.23	9.12		120	77.96	15.59	2.03
180	91.35	9.13		180	88.12	17.62	
240	91.12	9.11		240	88.02	17.60	
300	91.35	9.13		300	88.83	17.76	
		Qe = 9.12				Qe=17.62	

Table 21 Effect of agitation time and initial metal concentration on Mercury adsorption by Tur dal husk (Adsorbent dose = 0.1 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	0./			(min)	0./	(11)	
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
5	55.68	(mg/g) 5.56	4.16	5	20.26	(mg/g) 4.05	14.94
15	68.68	6.86	2.86	15	34.82	4.03 6.96	12.03
30	78.75	7.87	1.85	30	54.62 54.42	10.88	8.11
60	97.25	7.87 9.72	1.63	60	54.42 67.61	13.52	5.47
120	97.23 97.8	9.72 9.78		120	74.82	13.32	4.03
							4.03
180	97.98	9.79		180	94.96	18.99	
240	98.16	9.81		240	94.69	18.93	
300	97.98	9.79		300	95.23	19.04	
A -:4-4:		Qe=9.72		A -:4-4:		Qe=18.99	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)	%	H _~ (H)	~~ ~	(min)	%	H ₂ (H)	~~ ~
		Hg (II)	qe-q			Hg (II)	qe-q
	adsorbe d	adsorbed			adsorbe d	adsorbed	
E		(mg/g)	22.22	5		(mg/g)	71 70
5	28.23	14.11	33.22		18.96	18.96	71.78
15	34.1	17.05 20.93	30.28 26.4	15 30	30.38 43.46	30.38 43.46	60.36 47.28
30	41.87						
60	51.5	25.75	21.58	60	49.89	49.89	40.85
120	74.01	37.00	10.33	120	66.59	66.59	24.15
180	84.22	42.11	5.22	180	84.3	84.3	6.44
240	94.66	47.33		240	90.74	90.74	
300	94.43	47.21		300	91.14	91.14	
		Qe=47.33				Qe=90.74	

Table 22Effect of agitation time and initial metal concentration on Mercury adsorption by Coffee husk (Adsorbent dose = 0.2 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
~	50.00	(mg/g)	2.25	_	05.10	(mg/g)	6.00
5	52.32	2.61	2.25	5	25.12	2.51	6.88
15	68.68	3.43	1.43	15	34.82	3.48	5.91
30	78.75	3.93	0.93	30	54.42	5.44	3.95
60	97.25	4.86		60	67.61	6.76	2.63
120	97.8	4.89		120	93.94	9.39	
180	97.98	4.89		180	94.96	9.49	
240	98.16	4.90		240	94.69	9.46	
300	97.98	4.89		300	94.82	9.48	
		Qe = 4.86				Qe=9.39	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed (mg/g)			adsorbed	adsorbed (mg/g)	
5	14.23	3.55	19.25	5	9.56	4.78	39.28
15	20.44	5.11	17.69	15	18	9	35.06
30	31.89	7.97	14.83	30	27.16	13.58	30.48
60	75.23	18.80	4	60	67.2	33.6	10.46
120	91.23	22.80		120	88.12	44.06	
180	91.35	22.83		180	88.02	44.01	
240	91.12	22.78		240	87.92	43.96	
300	91.35	22.83		300	88.32	44.16	
		Qe=22.8				Qe=44	

 $\label{eq:Table23} \textbf{Effect of agitation time and initial metal concentration on Mercury adsorption by } \\ \textbf{Tamarind husk (Adsorbent dose} = 0.1 \text{ g/}100\text{mL})$

Agitation time		10 mg/L		Agitation time		20 mg/L	
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed (mg/g)			adsorbed	adsorbed (mg/g)	
5	8.23	0.82	8.69	5	7.32	1.46	16.78
15	18	1.8	7.71	15	12.3	2.46	15.78
30	29.15	2.91	6.6	30	21.45	4.29	13.95
60	43.56	4.35	5.16	60	37.98	7.59	10.65
120	66.48	6.64	2.87	120	59.86	11.97	6.27
180	89.25	8.92	0.59	180	75.23	15.04	3.2
240	95.63	9.56		240	89.65	17.93	0.31
300	94.98	9.49		300	91.22	18.24	
360	95.21	9.52		360	90.21	18.04	
420	95.14	9.51		420	90.34	18.06	
		Qe=9.51				Qe=18.24	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	3.66	1.83	41.28	5	2.37	2.37	76.87
15	8.52	4.26	38.85	15	4.68	4.68	74.56
30	13.56	6.78	36.33	30	10.21	10.21	69.03
60	28.25	14.12	28.99	60	25.46	25.46	53.78
120	49.21	24.60	18.51	120	45.15	45.15	34.09
180	61.21	30.60	12.51	180	58.23	58.23	21.01
240	78.21	39.10	4.01	240	71.55	71.55	7.69
300	84.12	42.06	1.05	300	79.24	79.24	
360	86.22	43.11		360	80.26	80.26	
420	87.11	43.55		420	79.11	79.11	
		Qe=43.1				Qe=79.2	

Table 24 Effect of agitation time and initial metal concentration on Nickel adsorption by bengal gram husk (Adsorbent dose = 0.2~g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	%	H~ (II)	~~ ~	(min)	%	H~ (H)	a. a
	adsorbed	Hg (II)	qe-q		adsorbed	Hg (II)	qe-q
	ausorbeu	adsorbed (mg/g)			ausorbeu	adsorbed (mg/g)	
5	96.23	4.81		5	93.21	9.32	
15	99.019	4.95		15	97.5	9.75	
30	99.5	4.97		30	99.39	9.93	
60	99.019	4.95		60	99.39	9.93	
120	99.019	4.95		120	99.39	9.93	
180	99.019	4.95		180	99.39	9.93	
240	99.019	4.95		240	99.39	9.93	
300	99.019	4.95		300	99.39	9.93	
Agitation		50 mg/L		Agitation		100 mg/L	
time (min)				time			
				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	65.37	16.34	8.49	5	55.23	27.61	20.58
15	73.5	18.37	6.46	15	61.44	30.72	17.47
30	81.45	20.36	4.47	30	77.71	38.85	9.34
60	97.01	24.2	0.63	60	83.13	41.56	6.63
120	99.33	24.83		120	92.77	46.38	1.81
180	99.33	24.83		180	96.38	48.19	
240	99.33	24.83		240	96.98	48.49	
300	99.33	24.83		300	96.98	48.49	
		Qe = 24.83				Qe=48.19	

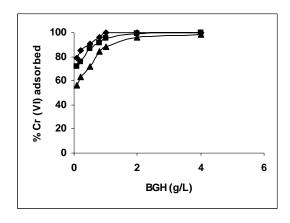
Table 25 Effect of agitation time and initial metal concentration on Nickel adsorption by Tur dal husk (Adsorbent dose = 0.5~g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time (min)				time (min)			
(mm)	% adsorbed	Hg (II) adsorbed (mg/g)	qe-q	(mm)	% adsorbed	Hg (II) adsorbed (mg/g)	qe-q
5	72.32	1.44	0.52	5	63.21	2.52	1.43
15	85.18	1.70	0.26	15	76.36	3.05	0.9
30	90.74	1.81	0.15	30	79.39	3.17	0.78
60	98.14	1.96		60	97.57	3.90	0.05
120	99.07	1.98		120	98.78	3.95	
180	99.07	1.98		180	99.39	3.97	
240	100	2		240	99.39	3.97	
300	100	2		300	100	4	
		Qe=1.96				Qe=3.95	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	% adsorbed	Hg (II) adsorbed (mg/g)	qe-q		% adsorbed	Hg (II) adsorbed (mg/g)	qe-q
5	59.23	5.92	4.03	5	49.23	9.84	10.05
15	72.38	7.23	2.72	15	74.5	14.9	4.99
30	78.85	7.88	2.07	30	79.63	15.92	3.97
60	83.58	8.35	1.6	60	81.73	16.34	3.55
120	93.53	9.35	0.6	120	95.53	19.10	0.79
180	99.5	9.95		180	99.47	19.89	
240	99.25	9.92		240	99.6	19.92	
300	99	9.9		300	99.73	19.94	
		Qe=9.95				Qe=19.89	

Table 26 Effect of agitation time and initial metal concentration on Nickel adsorption by Coffee husk (Adsorbent dose = 0.5 g/100mL)

Agitation		10 mg/L		Agitation		20 mg/L	
time				time			
(min)	0/	II. (II)		(min)	0/	II. (II)	
	% - 1 1 1	Hg (II)	qe-q		% - 1 1 1	Hg (II)	qe-q
	adsorbed	adsorbed (mg/g)			adsorbed	adsorbed (mg/g)	
5	37.69	0.75	1.22	5	32	1.28	2.65
15	49.36	0.98	0.99	15	41.31	1.65	2.28
30	75.24	1.50	0.47	30	72.45	2.89	1.04
60	88.94	1.77	0.2	60	83.22	3.32	0.61
120	96.25	1.92	0.05	120	95.65	3.82	0.11
180	98.58	1.97		180	97.89	3.91	
240	99.58	1.99		240	98.45	3.93	
300	98.78	1.97		300	97.68	3.90	
360	98.65	1.97		360	97.51	3.90	
		Qe=1.97				Qe=3.93	
Agitation		50 mg/L		Agitation		100 mg/L	
time		_		time		_	
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed			adsorbed	adsorbed	
		(mg/g)				(mg/g)	
5	19.34	1.93	6.42	5	11.89	2.37	13.85
15	29.74	2.97	5.38	15	19.92	3.98	12.24
30	67.4	6.74	1.61	30	55.93	11.18	5.04
60	83.86	8.38		60	77.72	15.54	0.68
120	82.59	8.25		120	81.11	16.22	
180	83.54	8.35		180	80.87	16.17	
240	83.22	8.32		240	82.32	16.46	
300	83.11	8.31		300	81.35	16.27	
360	83.54	8.35		360	82.8	16.56	
		Qe=8.35				Qe=16.22	

Table 27 Effect of agitation time and initial metal concentration on Nickel adsorption by Tamarind husk (Adsorbent dose = 0. 2 g/100mL)


Agitation time (min)		10 mg/L		Agitation time (min)		20 mg/L	
(mm)	% adsorbed	Hg (II) adsorbed (mg/g)	qe-q	(11111)	% adsorbed	Hg (II) adsorbed (mg/g)	qe-q
5	10.28	0.51	4.27	5	8.25	0.82	8.3
15	18	0.9	3.88	15	12.3	1.23	7.89
30	29.15	1.45	3.33	30	21.45	2.14	6.98
60	43.56	2.17	2.61	60	37.98	3.79	5.33
120	66.48	3.32	1.46	120	59.86	5.98	3.14
180	89.25	4.46	0.32	180	75.23	7.52	1.6
240	95.63	4.78		240	89.65	8.96	0.16
300	94.98	4.74		300	91.22	9.12	
360	95.21	4.76		360	90.21	9.02	
420	95.14	4.75		420	90.34	9.03	
		Qe=4.78				Qe=9.12	
Agitation		50 mg/L		Agitation		100 mg/L	
time				time			
(min)				(min)			
	%	Hg (II)	qe-q		%	Hg (II)	qe-q
	adsorbed	adsorbed (mg/g)			adsorbed	adsorbed (mg/g)	
5	6.78	1.69	19.34	5	1.78	0.89	38.73
15	8.52	2.13	18.9	15	4.68	2.34	37.28
30	13.56	3.39	17.64	30	10.21	5.10	34.51
60	28.25	7.06	13.97	60	25.46	12.73	26.89
120	49.21	12.30	8.73	120	45.15	22.57	17.05
180	61.21	15.30	5.73	180	58.23	29.11	10.51
240	78.21	19.55	1.48	240	71.55	35.77	3.85
300	84.12	21.03		300	79.24	39.62	
360	86.22	21.55		360	80.26	40.13	
420	87.11	21.77		420	79.11	39.55	
		Qe=21.03				Qe=39.62	

.3.2 Effect of adsorbent dosage

Results on the effect of adsorbent dosage at various initial metal concentrations are presented in this section. Adsorption of chromium (VI) by bengal gram husk, tur dal husk, coffee husk and tamarind husk at different initial metal concentrations and various adsorbent dosages are presented in Figures 22 to 25. The effect of adosorbent dosage on Ferric ion removal by bengal gram husk, tur dal husk, coffee husk and

Tamarind husk in Figures 26 to 29. Figures 30 to 33 represent the biosorption of mercury (II) by the four husks. Similarly Figures 34 to 37 represent the bioremoval of nickel by the various adsorbents at different adsorbent dosages.

The amount of adsorbent dosage required for the optimum removal of the metal ions increased with increase in the initial metal ion concentration. TDH proved efficient among all the husks for the maximum removal of metal ions followed by BGH, CH and TH.

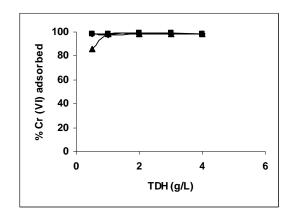
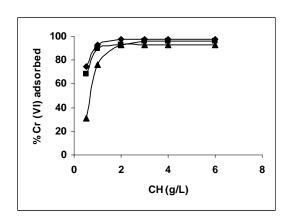



Figure: 23

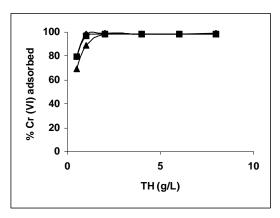
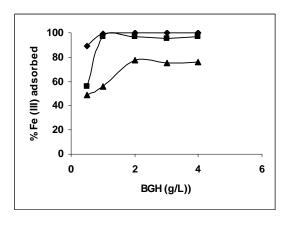



Figure: 24

Figure 22-25 Effect of adsorbent dose on the Chromium biosorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L Δ 50 mg/L)

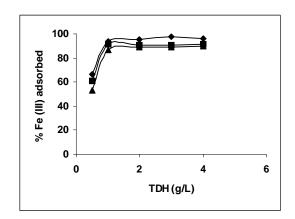
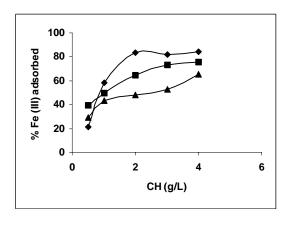



Figure: 27

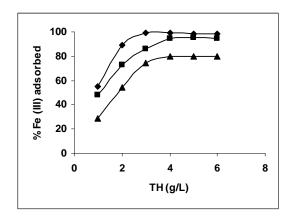
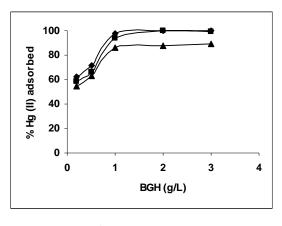



Figure: 29

Figure 26-29 Effect of adsorbent dose on the Iron biosorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L \bigstar 50 mg/L)

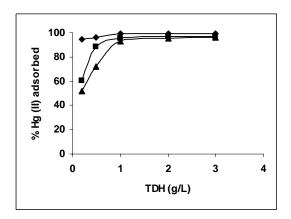
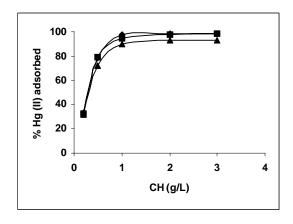



Figure: 31

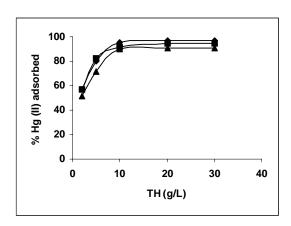
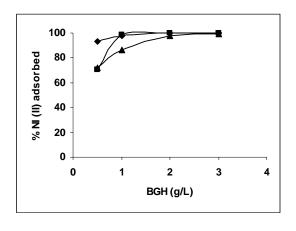



Figure: 32

Figure 30 - 33 Effect of adsorbent dose on the Mercury biosorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L)

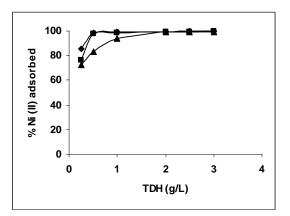
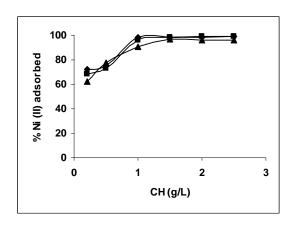
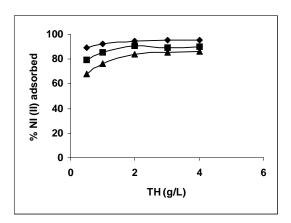



Figure: 34 Figure: 35



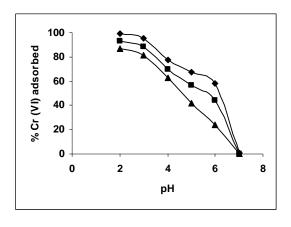

Figure: 36 Figure: 37

Figure 34-37 Effect of adsorbent dose on the Nickel biosorption by BGH, TDH, CH and TH respectively (\blacklozenge 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L)

5.3.3 Effect of pH

Data for the effect of pH and the effect of different initial metal ion concentration is presented in Tables 28 to 31 and Figures 38 to 41 for chromium (VI) biosorption by bengal gram husk; tur dal husk; coffee husk and tamarind husk. Tables 32 to 35 and Figures 42 to 45 show the effect of pH on biosorption of Iron by the four husks. Similarly Tables 36 to 39 and Figures 46 to 49 show biosorption of mercury and Tables 40 to 43 and Figures 50 to 53 show the adsorption of nickel at different pH and varying concentration of metal ions.

The results of effect of pH on the removal of metals reveal that irrespective of the husk (adsorbent) metal ions were adsorbed. Chromium removal was optimal at pH 2.0; iron (III) showed maxium adsorption at 2.5; mercury was adsorbed at pH 6.0 and nickel at pH 5.5.

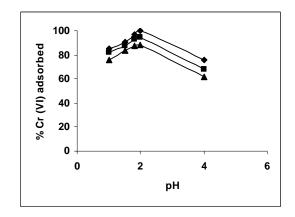
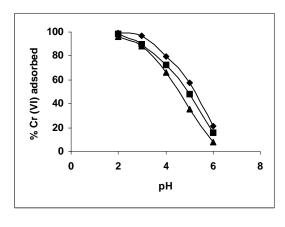



Figure: 39

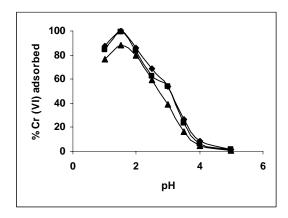
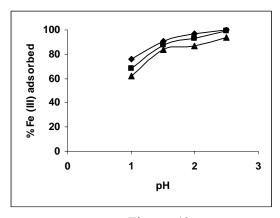



Figure: 40

Figure 38-41 Effect of pH on the Chromium biosorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L Δ 50 mg/L)

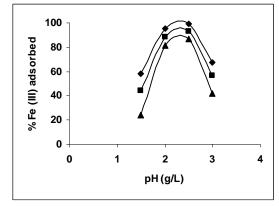
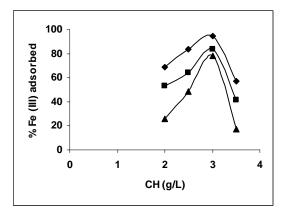



Figure: 42

Figure: 43

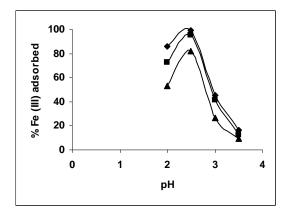
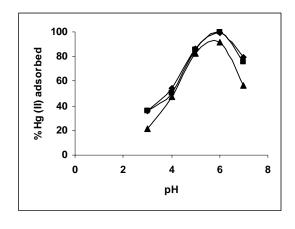



Figure: 44

Figure: 45

Figure 42-45 Effect of pH on the Iron biosorption by BGH, TDH, CH and TH respectively (♦ 10 mg/L ■ 20 mg/L \triangle 50 mg/L)

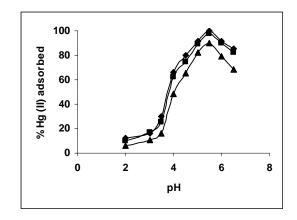
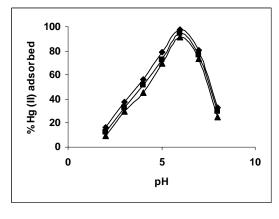



Figure: 47

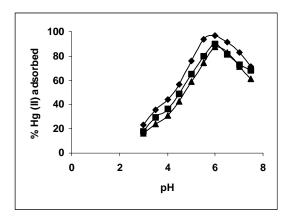
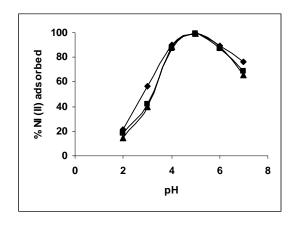



Figure: 48

Figure 46-49 Effect of pH on the Mercury biosorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L Δ 50 mg/L)

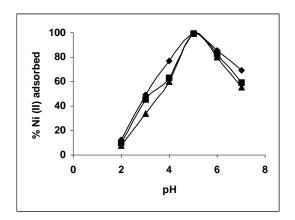
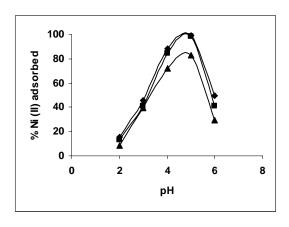



Figure: 51

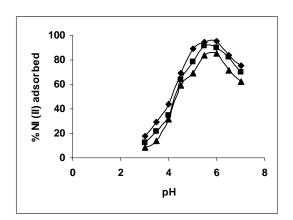


Figure: 52

Figure 50-53 Effect of pH on the Nickel biosorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L)

Table 28 Effect of pH and initial metal ion concentration on chromium adsorption by Bengal gram husk (Adsorbent dose = 0.2g/100ml)

	10 m	g/L	20 mg/L		50 mg/L	
pН	% adsorbed	Cr (VI) adsorbed	% adsorbed	Cr (VI) adsorbed	% adsorbed	Cr (VI) adsorbed
		(mg/g)		(mg/g)		(mg/g)
2	99.56	4.97	93.14	9.31	87.14	21.78
3	95.48	4.77	88.15	8.81	81.23	20.30
4	77.3	3.86	69.64	6.96	62.5	15.62
5	67.36	3.36	56.7	5.67	41.65	10.41
6	58.45	2.92	44.5	4.45	24.2	6.05
7	0.5	0.02	0.2	0.02	0.2	0.05

Table 29 Effect of pH and initial metal ion concentration on chromium adsorption by Tur dal husk (Adsorbent dose = 0.2g/100ml)

	10 mg/L		20 mg/L		50 mg/L	
pН	% adsorbed	Cr (VI) adsorbed (mg/g)	% adsorbed	Cr (VI) adsorbed (mg/g)	% adsorbed	Cr (VI) adsorbed (mg/g)
1	85.3	4.27	81.72	8.17	75.45	18.86
1.5	90.32	4.52	87.4	8.74	83.6	20.90
1.8	97.24	4.86	92.65	9.27	87.2	21.80
2	99.96	5.00	94.52	9.45	88	22.00
4	76	3.80	68.3	6.83	62	15.50

Table 30 Effect of pH and initial metal ion concentration on chromium adsorption by Coffee husk (Adsorbent dose = 0.5g/100ml)

	10 mg/L		20 mg/L		50 mg/L	
pН	% adsorbed	Cr (VI) adsorbed (mg/g)	% adsorbed	Cr (VI) adsorbed (mg/g)	% adsorbed	Cr (VI) adsorbed (mg/g)
2	99.16	1.98	98.76	3.95	96.01	9.60
3	96.66	1.93	90.12	3.60	88.16	8.81
4	79.25	1.58	72.34	2.89	66.21	6.62
5	57.2	1.14	48	1.92	35.47	3.54
6	21.2	0.42	15.64	0.62	7.5	0.75

Table 31 Effect of pH and initial metal ion concentration on chromium adsorption by tamarind husk (Adsorbent dose = 0.35g/100ml)

	10 n	ıg/L	20 n	20 mg/L		50 mg/L	
pН	%	Cr (VI)	%	Cr (VI)	%	Cr (VI)	
	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	
1	87.43	2.50	84.23	4.81	76.45	10.92	
1.5	99.89	2.85	98.92	5.65	88.66	12.67	
2	85.74	2.45	83.29	4.76	79.34	11.33	
2.5	68.41	1.95	62.12	3.55	59.29	8.47	
3	54.22	1.55	53.76	3.07	38.72	5.53	
3.5	26.74	0.76	23.41	1.34	16.79	2.40	
4	8.3	0.24	6.33	0.36	4.5	0.64	

Table 32 Effect of pH and initial metal ion concentration on Iron adsorption by bengal gram husk (Adsorbent dose = 0.25g/100ml)

	10 mg/L		20 n	20 mg/L		50 mg/L	
pН	%	Fe (III)	%	Fe (III)	%	Fe (III)	
	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	
1	76	3.04	68.3	5.46	62	12.4	
1.5	90.32	3.61	87.4	6.99	83.6	16.72	
2	97.24	3.89	92.65	7.41	87.2	17.44	
2.5	99.96	4.00	99.52	7.96	93.6	18.72	

Table 33 Effect of pH and initial metal ion concentration on Iron adsorption by Tur dal husk (Adsorbent dose = 0.25g/100ml)

	10 mg/L		20 n	ng/L	50 mg/L	
pН	% adsorbed	Fe (III) adsorbed (mg/g)	% adsorbed	Fe (III) adsorbed (mg/g)	% adsorbed	Fe (III) adsorbed (mg/g)
1.5	58.45	2.34	44.5	3.56	24.2	4.84
2	95.48	3.82	88.15	7.05	81.23	16.25
2.5	99.56	3.98	93.14	7.45	87.14	17.43
3	67.36	2.69	56.7	4.54	41.65	8.33

Table 34 Effect of pH and initial metal ion concentration on Iron adsorption by Coffee husk (Adsorbent dose = 0.25g/100ml)

	10 mg/L		20 n	20 mg/L		50 mg/L	
pН	%	Fe (III)	%	Fe (III)	%	Fe (III)	
	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	
2	69	2.76	52.94	4.23	25.9	5.18	
2.5	83.33	3.33	64.32	5.14	48.42	9.68	
3	94.68	3.78	83.52	6.68	78.23	15.64	
3.5	57.02	2.28	41.21	3.29	16.98	3.39	

Table 35 Effect of pH and initial metal ion concentration on Iron adsorption by tamarind husk (Adsorbent dose = 0.35g/100ml)

	10 mg/L		20 n	ng/L	50 mg/L	
pН	% adsorbed	Fe (III) adsorbed (mg/g)	% adsorbed	Fe (III) adsorbed (mg/g)	% adsorbed	Fe (III) adsorbed (mg/g)
2	86.32	2.47	72.41	4.14	53.33	7.62
2.5	99.01	2.83	95.4	5.45	81.81	11.69
3	45.21	1.29	41.65	2.38	26.43	3.78
3.5	16.23	0.46	12.25	0.70	9.56	1.37

Table36 Effect of pH and initial metal ion concentration on Mercury adsorption by bengal gram husk (Adsorbent dose = 0.5g/100ml)

	10 mg/L		20 n	20 mg/L		50 mg/L	
pН	%	Hg (II)	%	Hg (II)	%	Hg(II)	
	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	
3	36.23	0.72	35.8	1.43	21.22	2.12	
4	54.32	1.09	50.12	2.00	47.56	4.76	
5	86.23	1.72	85.42	3.42	82.1	8.21	
6	99.41	1.99	99.77	3.99	91.35	9.14	
7	79.32	1.59	75.23	3.01	56.32	5.63	

Table 37 Effect of pH and initial metal ion concentration on Mercury adsorption by Tur dal husk (Adsorbent dose = 0.1g/100ml)

	10 n	ıg/L	20 n	ng/L	50 mg/L	
pН	%	Hg (II)	%	Hg (II)	%	Hg(II)
	adsorbed	adsorbed	adsorbed	adsorbed	adsorbed	adsorbed
		(mg/g)		(mg/g)		(mg/g)
2	12.04	1.20	9.65	1.93	6.32	3.16
3	16.32	1.63	16.56	3.31	11.11	5.56
3.5	29.65	2.97	25.12	5.02	16.23	8.12
4	65.98	6.60	62.45	12.49	48.32	24.16
4.5	79.63	7.96	74.68	14.94	65.21	32.61
5	91.54	9.15	89.02	17.80	82.12	41.06
5.5	99.65	9.97	97.58	19.52	90.21	45.11
6	91.23	9.12	90.2	18.04	79.21	39.61
6.5	85.21	8.52	82.54	16.51	68.21	34.11

Table 38 Effect of pH and initial metal ion concentration on Mercury adsorption by Coffee husk (Adsorbent dose = 0.2g/100ml)

	10 n	ıg/L	g/L 20 m		5(0 mg/L	
pН	%	Hg (II)	%	Hg (II)	%	Hg(II)	
	adsorbed	adsorbed	adsorbed	adsorbed	adsorbed	adsorbed	
		(mg/g)		(mg/g)		(mg/g)	
2	16.56	0.83	12.56	1.26	9.54	2.39	
3	37.5	1.88	32.45	3.25	29.42	7.36	
4	56.49	2.82	51.23	5.12	45.38	11.35	
5	79.24	3.96	72.35	7.24	69.4	17.35	
6	97.98	4.90	94.82	9.48	91.35	22.84	
7	80.15	4.01	76.32	7.63	73.56	18.39	
8	32.54	1.63	29.68	2.97	25.32	6.33	

Table 39 Effect of pH and initial metal ion concentration on Mercury adsorption by Tamarind husk (Adsorbent dose = 0.1g/100ml)

	10 n	ıg/L	20 n	ng/L	50 mg/L	
pН	%	Hg (II)	%	Hg (II)	%	Hg(II)
	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)
3	23.24	2.32	18.12	3.62	16.23	8.12
3.5	35.64	3.56	29.54	5.91	23.88	11.94
4	44.21	4.42	36.41	7.28	31.18	15.59
4.5	56.49	5.65	49.21	9.84	42.31	21.16
5	75.68	7.57	65.17	13.03	59.27	29.64
5.5	93.45	9.35	79.82	15.96	74.58	37.29
6	96.54	9.65	90.14	18.03	87.85	43.93
6.5	91.24	9.12	81.23	16.25	83.12	41.56
7	83.25	8.33	73	14.60	71.14	35.57
7.5	71.24	7.12	68.44	13.69	61.25	30.62

Table 40 Effect of pH and initial metal ion concentration on Nickel adsorption by bengal gram husk (Adsorbent dose = 0.2g/100ml)

	10 n	10 mg/L		20 mg/L		50 mg/L	
pН	% adsorbed	Ni (II) adsorbed (mg/g)	% adsorbed	Ni (II) adsorbed (mg/g)	% adsorbed	Ni (II) adsorbed (mg/g)	
2	21.12	1.06	18.43	1.84	14.21	3.55	
3	56.12	2.81	41.85	4.19	39.78	9.95	
4	90.12	4.51	87.25	8.73	88.21	22.05	
5	99.01	4.95	99.39	9.94	99.33	24.83	
6	89.03	4.45	87.34	8.73	88.22	22.06	
7	76.45	3.82	68.78	6.88	65.34	16.34	

Table 41 Effect of pH and initial metal ion concentration on Nickel adsorption by tur dal husk (Adsorbent dose = 0.5g/100ml)

	10 n	10 mg/L		20 mg/L) mg/L
pН	% adsorbed	Ni (II) adsorbed (mg/g)	% adsorbed	Ni (II) adsorbed (mg/g)	% adsorbed	Ni (II) adsorbed (mg/g)
2	12.05	0.24	10.22	0.41	7.44	0.74
3	49.56	0.99	45.21	1.81	34.12	3.41
4	76.57	1.53	62.89	2.52	59.85	5.99
5	99.07	1.98	99.39	3.98	99.5	9.95
6	85.41	1.71	82.31	3.29	79.65	7.97
7	69.54	1.39	59.1	2.36	55.21	5.52

Table 42 Effect of pH and initial metal ion concentration on Nickel adsorption by coffee husk (Adsorbent dose = 0.5g/100ml)

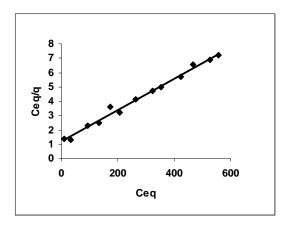

	10 mg/L		20 mg/L		50 mg/L	
pН	% adsorbed	Ni (II) adsorbed (mg/g)	% adsorbed	Ni (II) adsorbed (mg/g)	% adsorbed	Ni (II) adsorbed (mg/g)
2	15.32	0.31	13.21	0.53	8.56	0.86
3	45.63	0.91	41.32	1.65	39.41	3.94
4	88.56	1.77	84.23	3.37	72.21	7.22
5	99.58	1.99	98.45	3.94	83.22	8.32
6	49.36	0.99	41.31	1.65	29.74	2.97

Table 43 Effect of pH and initial metal ion concentration on Nickel adsorption by tamarind husk (Adsorbent dose = 0.2g/100ml)

	10 n	ng/L	20 n	ng/L	50) mg/L
pН	%	Ni (II)	%	Ni (II)	%	Ni (II)
	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)	adsorbed	adsorbed (mg/g)
3	18	0.90	12.3	1.23	8.52	2.13
3.5	29.15	1.46	21.45	2.15	13.56	3.39
4	43.56	2.18	34.98	3.50	31.25	7.81
4.5	69.48	3.47	63.86	6.39	59.21	14.80
5	89.25	4.46	78.23	7.82	69.21	17.30
5.5	94.98	4.75	91.22	9.12	84.12	21.03
6	95.12	4.76	90.22	9.02	85.22	21.31
6.5	84.21	4.21	82.45	8.25	71.65	17.91
7	75.44	3.77	70.21	7.02	62.12	15.53

5.3.4 Adsorption Isotherms

Data for Langmuir isotherms for Chromium adsorption by the four adsorbents is given in Figures 54 to 57. Figures 58 to 61 give the Iron adsorption by the four adsorbents; Figures 62 to 65 present the Langmuir isotherms for mercury adsorption by the four husks and Figures 66 to 69 present the Langmuir isotherms for nickel adsorption. The plots of langmuir isotherms Ceq/q vs Ceq show that all the adsorbents followed the Langmuir isotherm with respect to the metal ions.

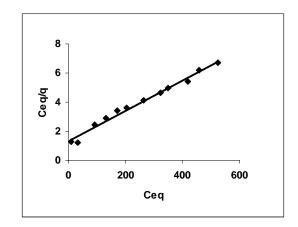
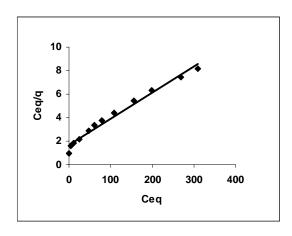



Figure: 55

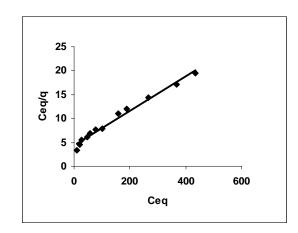
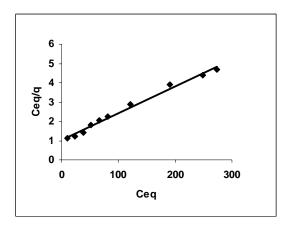



Figure: 57

Figure 54-57 Langmuir adsorption isotherm for Cr (VI) by BGH, TDH, CH and TH respectively

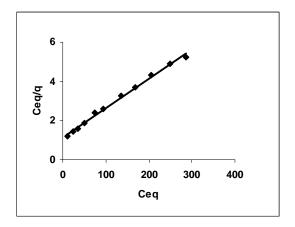
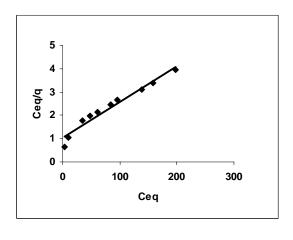



Figure: 59

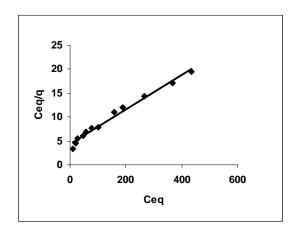
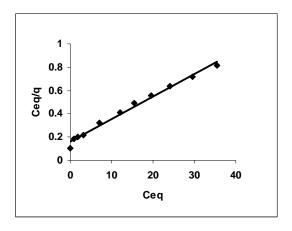



Figure: 60

Figure 58-61 Langmuir adsorption isotherm for Iron biosorption by BGH, TDH, CH and TH respectively

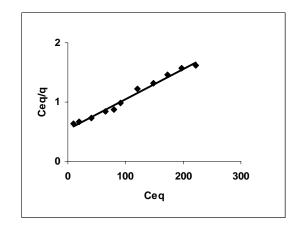
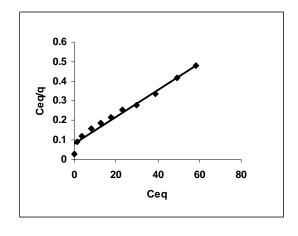



Figure: 63

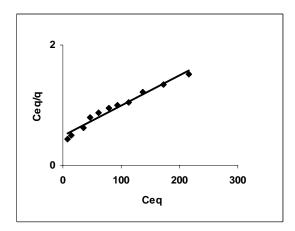


Figure: 64

Figure 62-65 Langmuir adsorption isotherm for mercury by BGH, TDH, CH and TH respectively

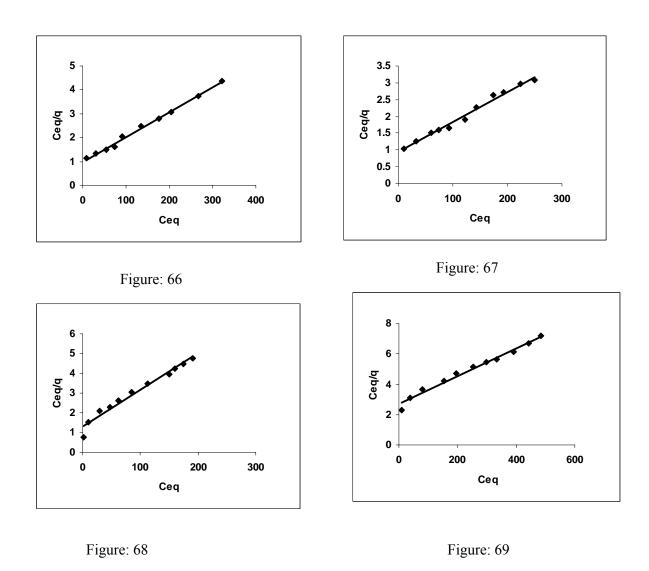


Figure 66-69 Langmuir adsorption isotherm for Nickel by BGH, TDH, CH and TH respectively

Data for Freundlich plots are given in Figures 70 to 73 for chromium biosorption by BGH; TDH, CH and TH respectively. The Freundlich plots are given in Figures 74 to 77 and Figures 78 to 81 for iron and mercury biosorption by BGH; TDH, CH and TH. The Freundlich plots for nickel adsorption by the four husks are given in Figures 82 to 85. The linear plots of ln Ceq vs ln q for all the adsorbents showed that Freundlich isotherm was followed.

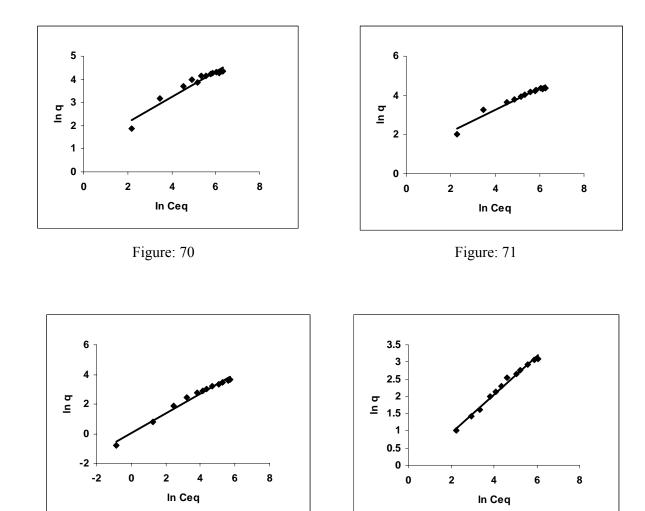
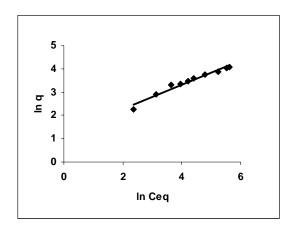



Figure: 72 Figure: 73

 $\textbf{Figure 70-73} \ \ \text{Freundlich adsorption isotherm for Chromium (VI) by BGH, TDH, CH and TH respectively }$

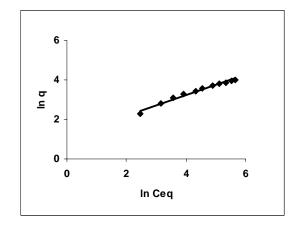
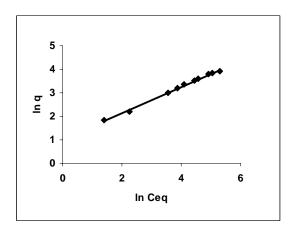



Figure: 75

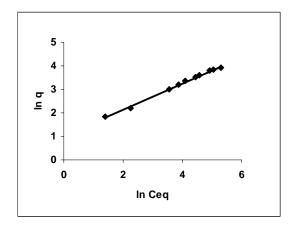
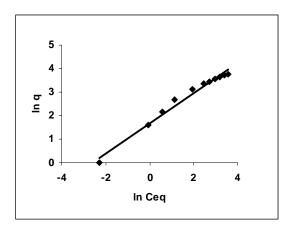



Figure 76

Figure 74-77 Freundlich adsorption isotherm for Iron biosorption by BGH, TDH, CH and TH respectively

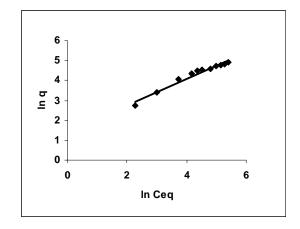
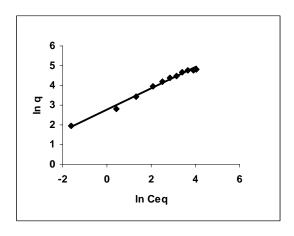



Figure: 79

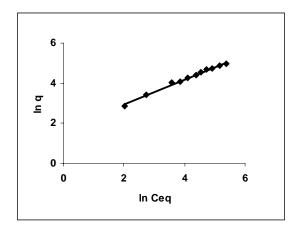
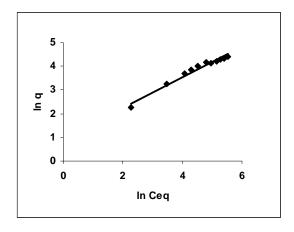



Figure: 80

Figure 78-81 Freundlich adsorption isotherm for mercury (II) by BGH, TDH, CH and TH respectively

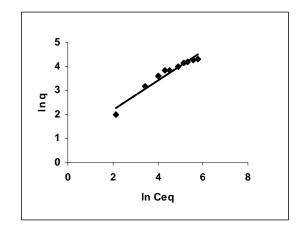
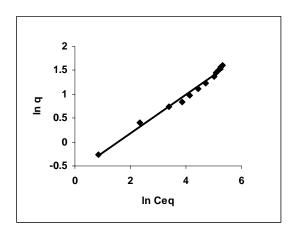



Figure: 82 Figure: 83

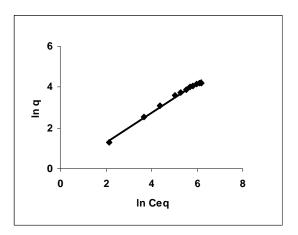


Figure: 84 Figure: 85

Figure 82-85 Freundlich adsorption isotherm for Nickel (II) by BGH, TDH, CH and TH respectively

The Langmuir and Freundlich constants calculated from the isotherm equations are given in Tables 44 to 47 for adsorption of metals Chromium, iron, mercury and nickel by BGH, TDH, TH and CH. The maximum adsorption capacity for BGH with respect to metals were nickel>chromium>iron >mercury. Tur dal husk showed maximum adsorption capacity of mercury followed by iron, chromium and nickel. Tamarind husk was efficient in the biosorption of mercury followed by nickel, iron and chromium. Coffee husk showed least biosorption capacity for chromium and maximum for mercury.

Table 44 Sorption isotherm constants and coefficients of determination adsorption of metal ions for BGH

	Langmuir equation			Freundlich equation		
	$\begin{array}{c} Q_{max} \\ (mg/g) \end{array}$	b (l/mg)	R^2	$K_F \text{ (mg/g)}$	n	R^2
Iron	72.16	0.01	0.98	1.649	3.4	0.96
Chromium	91.64	0.009	0.98	2.81	1.81	0.92
Mercury	51.85	0.11	0.98	5.31	1.56	0.98
Nickel	112.22	0.009	0.98	9.19	1.56	0.97

Table45 Sorption isotherm constants and coefficients of determination for adsorption of metal ions by TDH

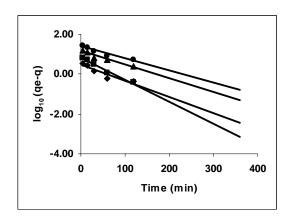
	Langmuir equation			Freundlich equation		
	$\begin{array}{c} Q_{max} \\ (mg/g) \end{array}$	b (l/mg)	R^2	K_F (mg/g)	n	R^2
Iron	66.63	0.01	0.99	1.45	1.82	0.97
Chromium	96.05	0.007	0.98	2.95	1.83	0.95
Nickel	96.58	0.01	0.99	8.19	1.62	0.95
Mercury	196.32	0.009	0.98	4.05	1.49	0.96

Table 46Sorption isotherm constants and coefficients of determination for adsorption of metal ions TH

	Langmuir equation			Freundlich equation		
	$\begin{array}{c} q_{max} \\ (mg/g) \end{array}$	b (l/mg)	R^2	$K_F \text{ (mg/g)}$	n	R^2
Iron	56.55	0.01	0.96	5.5	1.61	0.98
Chromium	27.73	0.008	0.98	1.17	1.8	0.98
Mercury	184.39	0.011	0.97	5.5	1.66	0.98
Nickel	111.11	0.003	0.98	1.48	1.37	0.99

Table47 Sorption isotherm constants and coefficients of determination for adsorption of metal ions CH

	Langmuir equation			Freundlich equation		
	$\begin{array}{c} q_{max} \\ (mg/g) \end{array}$	b (l/mg)	R^2	$K_F \text{ (mg/g)}$	n	R^2
Iron	64.80	0.01	0.97	1.47	2.12	0.99
Chromium	44.95	0.01	0.98	1.02	1.49	0.98
Mercury	145.73	0.084	0.97	15.96	1.88	0.98
Nickel	54	0.014	0.97	4.16	2.5	0.98


Table 48 Equilibrium parameter (R_L) for adsorption of metals

Adsorbent	Adsorbate	$ ho_{ m L}$
	Chromium (VI)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
Bengal gram husk	Iron (III)	$8.3 \times 10^{-1} - 1.4 \times 10^{-1}$
(BGH)	Nickel (II)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
	Mercury (II)	$3.1 \times 10^{-1} - 1.4 \times 10^{-2}$
	Chromium (VI)	$8.7 \times 10^{-1} - 1.9 \times 10^{-1}$
Tur dal husk (TDH)	Iron (III)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
	Nickel (II)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
	Mercury (II)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
	Chromium (VI)	$8.6 \times 10^{-1} - 1.7 \times 10^{-1}$
Tamarind husk (TH)	Iron (III)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
	Nickel (II)	$9.4 \times 10^{-1} - 3.5 \times 10^{-1}$
	Mercury (II)	$8.1 \times 10^{-1} - 1.3 \times 10^{-1}$
	Chromium (VI)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
Coffee husk (CH)	Iron (III)	$8.4 \times 10^{-1} - 1.5 \times 10^{-1}$
	Nickel (II)	$7.8 \times 10^{-1} - 1.9 \times 10^{-2}$
	Mercury (II)	$3.7 \times 10^{-1} - 1.9 \times 10^{-2}$

5.3.5 Adsorption kinetics

Lagergren plots of log10 (qe-q) vs t for the adsorption of chromium VI by BGH, TDH and TH at various initial metal ion concentrations is given in Figures 86 to 88. The kinetics of adsorption of iron by TDH, TH and CH are given in Figures 89 to 91; mercury adsorption in Figures 92 to 95 and nickel adsorption in Figures 96 to 99.

The rate constants that are derived from the Langergren equation are given in Tables 49 to 62 for metal ions. The linear plots of log10 (qe-q) vs t show that the adsorption follows a pseudo first order reaction.

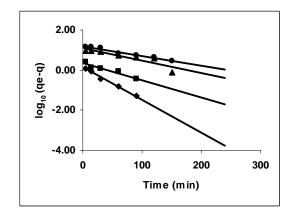


Figure: 87

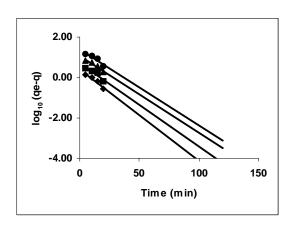
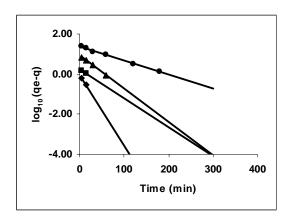



Figure: 88

Figure 86-88 Lagergren plots for Chromium by BGH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L \bigstar 100mg/L)

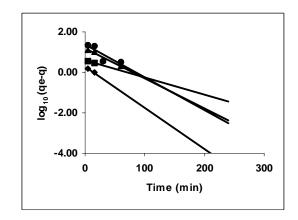
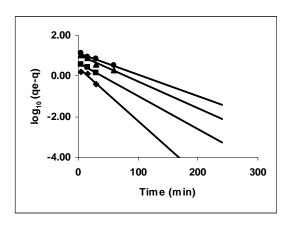
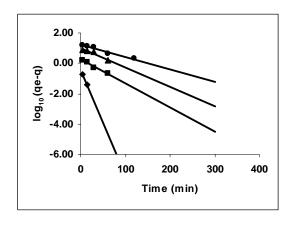




Figure: 90

Figure 89-91 Lagergren plots for Iron adsorption by TDH, CH and TH respectively (\blacklozenge 10 mg/L \blacksquare 20 mg/L \blacktriangle 50 mg/L \blacklozenge 100mg/L)

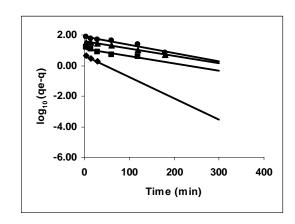


Figure: 92 Figure: 93

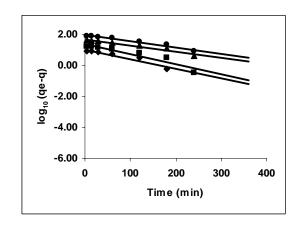
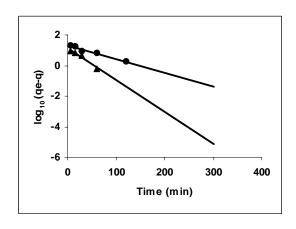



Figure: 94 Figure: 95

Figure 92-95 Lagergren plots for Mercury adsorption by TDH, CH and TH respectively (◆ 10 mg/L ■ 20 mg/L ▲ 50 mg/L • 100mg/L)

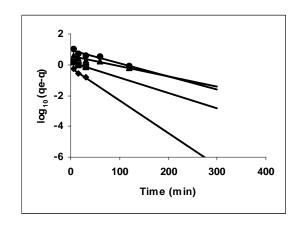
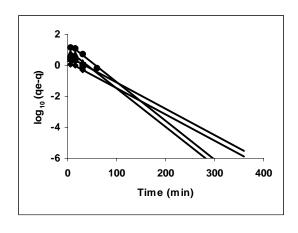



Figure: 96 Figure: 97

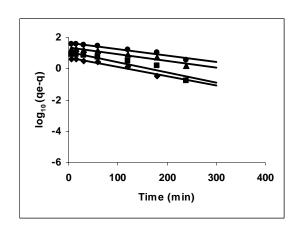


Figure: 98 Figure: 99

Figure 96-99 Lagergren plots for Nickel adsorption by BGH, TDH, CH and TH respectively (\bigstar 10 mg/L \blacksquare 20 mg/L \bigstar 50 mg/L \bigstar 100mg/L)

Table 49 Effect of initial chromium (VI) concentration on Lagergren rate constant by bengal gram husk (Adsorbent dose – 0.2g/100 mL; pH 2.0)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L) 10	1.85 X 10 ⁻²	0.8577
20	2.5 X10 ⁻²	0.9764
50	1.5 X 10 ⁻²	0.9403
100	1.3 X 10 ⁻²	0.9161

Table50 Effect of initial chromium (VI) concentration on Lagergren rate constant by coffee husk (Adsorbent dose – 0.5 g/100 mL; pH 2.0)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L)	3.7 X 10 ⁻²	0.9911
20	1.9 X10 ⁻²	0.9438
50	1.4 X 10 ⁻²	0.8219
100	1.1 X 10 ⁻²	0.9760

Table51 Effect of initial chromium (VI) concentration on Lagergren rate constant by Tamarind husk (Adsorbent dose -0.35g/100 mL; pH 2.0)

Initial metal concentration (mg/L)	Kad (l/min)	\mathbb{R}^2
10	1.04 X 10 ⁻¹	0.9482
20	9.4 X10 ⁻²	0.9209
50	8.7 X 10 ⁻²	0.9686
100	8.6 X 10 ⁻²	0.9089

Table52 Effect of initial Iron (III) concentration on Lagergren rate constant by tur dal husk (Adsorbent dose – 0.25g/100 mL; pH 2.5)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L)	8.1 X 10 ⁻²	1
20	3.3 X10 ⁻²	1
50	3.8 X 10 ⁻²	0.9983
100	1.6 X 10 ⁻²	0.9952

Table 53 Effect of initial Iron (III) concentration on Lagergren rate constant by coffee husk (Adsorbent dose – 0.25g/100 mL; pH 2.5)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L)	4.7 X 10 ⁻²	0.99
20	1.9 X10 ⁻²	0.8720
50	3.4 X 10 ⁻²	0.9760
100	3.7 X 10 ⁻²	0.99

Table 54 Effect of initial Iron (III) concentration on Lagergren rate constant by tamarind husk (Adsorbent dose – 0.35g/100 mL; pH 2.5)

Initial metal concentration (mg/L)	Kad (l/min)	\mathbb{R}^2
10	6.06 X 10 ⁻²	0.9472
20	3.7 X10 ⁻²	0.9828
50	3.05 X 10 ⁻²	0.9739
100	2.4 X 10 ⁻²	0.9909

Table 55 Effect of initial mercury (II) concentration on Lagergren rate constant by bengal gram husk (Adsorbent dose – 0.5g/100 mL; pH 6.0)

Initial metal concentration (mg/L)	Kad (l/min)	\mathbb{R}^2
10	1.6×10^{-1}	0.99
20	3.6 X10 ⁻²	0.9846
50	2.9 X 10 ⁻²	0.9244
100	1.9 X 10 ⁻²	0.9553

Table 56 Effect of initial mercury (II) concentration on Lagergren rate constant by tur dal husk (Adsorbent dose -0.1g/100 mL; pH 6.0)

Initial metal concentration (mg/L)	Kad (l/min)	\mathbb{R}^2
10	3.2 X 10 ⁻¹	0.9949
20	1.1 X10 ⁻²	0.8903
50	1.06 X 10 ⁻²	0.9939
100	1.25 X 10 ⁻²	0.9493

Table 57 Effect of initial mercury (II) concentration on Lagergren rate constant by coffee husk (Adsorbent dose -0.2g/100 mL; pH 6.0)

Initial metal concentration (mg/L)	Kad (l/min)	\mathbb{R}^2
10	3.4 X 10 ⁻²	0.9832
20	1.78 X10 ⁻²	0.9787
50	2.93 X 10 ⁻²	0.9152
100	2.4 X 10 ⁻²	0.9278

Table 58 Effect of initial mercury (II) concentration on Lagergren rate constant by tamarind husk (Adsorbent dose – 0.1g/100 mL; pH 6.0)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L)	1.4 X 10 ⁻²	0.9386
20	1.49 X10 ⁻²	0.8876
50	9.1 X 10 ⁻³	0.9501
100	9.2 X 10 ⁻³	0.9683

Table 59 Effect of initial nickel (II) concentration on Lagergren rate constant by bengal gram husk (Adsorbent dose – 0.2g/100 mL; pH 5.0)

Initial metal concentration (mg/L) 10	Kad (l/min)	\mathbb{R}^2
20		
50	4.7 X 10 ⁻²	0.9533
100	2.07 X 10 ⁻²	0.9831

Tables 60 Effect of initial nickel (II) concentration on Lagergren rate constant by tur dal husk (Adsorbent dose -0.5g/100 mL; pH 5.0)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L)	1.4 X 10 ⁻²	0.9675
20	2.3 X10 ⁻²	0.8406
50	1.5 X 10 ⁻²	0.9742
100	1.9X 10 ⁻²	0.9291

Table 61 Effect of initial nickel (II) concentration on Lagergren rate constant by coffee husk (Adsorbent dose – 0.5g/100 mL; pH 5.0)

Initial metal	Kad (l/min)	\mathbb{R}^2
concentration (mg/L)	3.9×10^{-2}	0.961
20	3.8 X10 ⁻²	0.9347
50	5.7 X 10 ⁻²	0.9177
100	5.7 X 10 ⁻²	0.9752

Table 62 Effect of initial nickel (II) concentration on Lagergren rate constant by tamarind husk (Adsorbent dose – 0.2g/100 mL; pH 5.0)

Initial metal concentration (mg/L)	Kad (l/min)	\mathbb{R}^2
10	1.38 X 10 ⁻²	0.9688
20	1.47 X10 ⁻²	0.889
50	9.9 X 10 ⁻³	0.9314
100	9.2 X 10 ⁻³	0.9688

5.3.6 Desorption studies

Figures 100 to 103 shows the effect of pH on the desorption of metal ions Chromium (VI), Iron (III), Mercury (II) and Nickel (II) by BGH, TDH, TH and CH. Chromium showed the least desorption capacity and mercury the maximum. The metals were desorbed faster from the tamarind husk when compared to other three adsorbents.

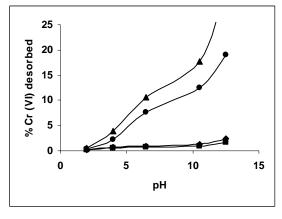


Figure: 100

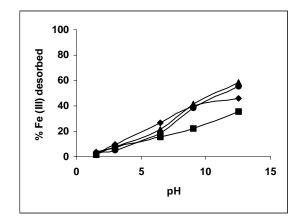


Figure: 101

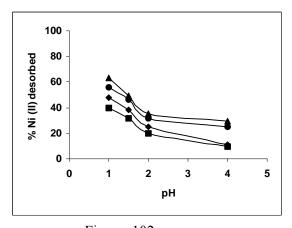


Figure: 102

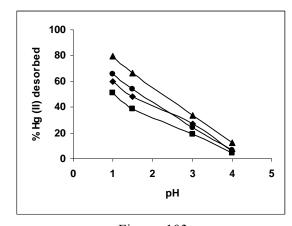


Figure: 103

Figure 100-103 Effect of pH on the desorption of Chromium (VI), Iron (III), Nickel (II) and Mercury (II) (♦ BGH ■ TDH ▲ CH ● TH)

6.0 DISCUSSION

6.1 CHARACTERISTICS OF THE ADSORBENT

The approximate percentages of total carbon, nitrogen and hydrogen in the four adsorbents namely bengal gram husk (BGH); tur dal husk (TDH); coffee husk (CH) and tamarind husk (TH) are shown in Table 11. The relatively low percentage of nitrogen (0.86% for BGH, 1.13% in TDH; 0.63 % in CH and 0.94% in TH) in comparison to the carbon quantities, indicates that few nitrogen containing compounds are involved in the adsorption of metals. A relatively larger percentage of hydrogen in comparison to nitrogen compounds indicates that carbon-hydrogen groups might be available for adsorption of metals. The relatively low percentage of nitrogen shows that very less percentage of protein might be present in the husks. This is advantageous over protein rich adsorbents since proteinious materials are likely to putrefy under moist conditions (Ahalya *et al.*, 2006).

6.2 INFRARED SPECTROSCOPIC STUDIES

Unreacted samples of the four adsorbents used in the present study namely bengal gram husk (BGH), Tur dal husk (TDH), coffee husk (CH) and tamarind husk (TH) were subjected to Fourier transform infrared spectroscopy (FTIR). The spectra obtained are presented in Figures 2 to 5 for BGH, TDH, TH and CH respectively.

The spectra of BGH sample (Figure 2) reveal the presence of several functional groups on the surface which facilitates the adsorption of metal ions. Wavenumber of 3000 and 3750 cm⁻¹ for BGH indicates the presence of OH groups on the husk surface. The trough that is observed at 2918.18 cm⁻¹ and 893.25 cm⁻¹ indicates the presence of C-H groups. The 1634.34 cm⁻¹ band is a result of CO stretching mode, conjugated to a NH deformation mode and is indicative of amide 1 band. The trough at 1115.57 cm⁻¹ is due to CO or CN groups (Ahalya *et al.*, 2005).

The absorption spectra of TDH (Figure 3) display a broad, intense --OH stretching absorption trough at 3431 cm⁻¹, although the bands are dominated by the -OH stretch

due to bonded water. Weaker ---CH stretch bands are superimposed onto the side of the broad -OH band at 3000–2800 cm⁻¹. The strong peak at 1733 cm⁻¹ is caused by the C=O stretching band of the carboxyl group. The peak at approximately 1100 cm⁻¹ is due to either the C-O stretch of the -OH bend. However, the N-H stretch (3300 cm⁻¹) and the C-N stretch (1000 cm⁻¹) are not seen in this spectra due to the dominance of the ---OH stretch (Ahalya *et al.*, 2006).

The spectrum of the pristine TH is complex due to the numerous and multifarious functional groups on the surface of the adsorbent (Figure 4). The broad and strong band ranging from 3200 to 3600 cm⁻¹ may be due to the overlapping of OH and NH stretching, which is consistent with the peak at 1115 and 1161 cm⁻¹ assigned to C–O and C–N stretching vibration, thus showing the presence of hydroxyl and amine groups on the adsorbent surface. The strong peak at 1674 cm⁻¹ can be assigned to a C=O stretching in carboxyl or amide groups. The bands at 2936 and 1558 cm⁻¹ are attributed to CH stretching and N–H bending, respectively.

The spectra of CH display a number of absorption peaks, indicating the complex nature of the material examined (Figure 5). The FTIR spectroscopic analysis indicated broad bands at 3412 cm⁻¹, representing bonded –OH groups. The bands observed at about 2921–2851 cm⁻¹ could be assigned to the C–H stretch. The peaks around 1733 cm⁻¹ correspond to the C=H group and at 1652–1512 cm⁻¹ C=O. This C–O band absorption peak is observed to shift to 1035 cm⁻¹. Thus, it seems that this type of functional group is likely to participate in metal binding (Ahalya *et al*, 2006).

6.3 Batch mode studies

In order to evaluate the feasibility and economics of adsorption, laboratory batch mode studies were conducted. In this study the optimum agitation speed i.e., good contact between the adsorbent and adsorbate was established at 120 rpm. Parameters, which influence the extent of adsorption such as adsorbate concentration, agitation time, adsorbent dosage and pH were investigated. In addition to the above parameters, effect of pH on the desorption of metals were investigated. The use of the adsorbent for continuous use was also determined by regeneration studies.

6.3.1 Effect of agitation time and adsorbate concentration on adsorption

The uptake of adsorbate increased with the increase in contact time for all the metals studied and it remained constant after an equilibrium time are shown in Figures 7 to 22. The equilibrium time varied with the type of husk under consideration and it increased with the increase in initial metal concentration. Chromium adsorption by tur dal husk was independent of time and attained equilibrium within 5 minutes of contact. The equilibrium time was independent of the adsorbate concentration as seen by chromium adsorption by bengal gram husk, tur dal husk and tamarind husk. The adsorbate concentration influenced the equilibrium time of the metal uptake by rest of the adsorbents.

At any contact time, increase in initial adsorbate concentration decreased the percent adsorption and increased the amount of adsorbate uptake (q) per unit weight of the adsorbant. It is seen that for the low initial concentrations, the percent uptake of the adsorbate was high. Even though the percent uptake of the adsorbate was smaller at high initial concentrations, the actual amount of the metals adsorbed (q) increased with increase in the initial adorbate concentration in the solution. The uptake (q) vs time curves were single, smooth and continuous leading to saturation, suggesting the possible monolayer coverage of the adsorbate on the surface of the adsorbent. Several authors have reported similar results for the adsorption of metals (Kanchana and Namasivayam, 1994; Namasivayam *et al*, 1993; Singh *et al*, 1992) Equilibrium time varied with the metals due to the difference in initial metal concentration and affinity of the adsorbent for the particular metal ion.

In all the experiments conducted, 100 ppm solutions took longer to attain equilibrium due to the presence of proportionally high amount of metal ions.

.

Mameri *et al* (1999) reported that the available adsorption sites on the biosorbent are the limiting factor for metal uptake. The equilibrium time required by the adsorbents used in the present study is less, compared to others reported in literature. This is significant as equilibrium time is one of the important considerations for economical water and wastewater applications. In process application, this rapid (or instantaneous) biosorption phenomenon is advantageous since the shorter contact time

effectively allows for a smaller size of the contact equipment, which in turn directly affects both the capacity and operation cost of the process.

6.3.2 Effect of adsorbent dosage on adsorption

The biosorption of metal was studied at various biosorbent concentrations ranging from 0.5 to 5 mg/L. The percentage of metal removed increased with increase in adsorbent dosage due to increased adsorption surface area. For all the adsorbents studied adsorbent dosage of 1g - 2g/L was sufficient for adsorption of 90% of the initial metal concentration. Further increase in the adsorbent dosage did not show an increased removal of metal concentrations.

The percent removal of adsorbates increased with increase in adsorbent dosage and reached a particular constant value after a particular adsorbent dosage. This is also true for different pH values studied. A maximum removal of about 90% was obtained for all the adsorbates studied. However, the adsorbent dosage required for maximum percent removal varied with the concentration of initial metal ions. This is mainly due to the fact that a larger mass of adsorbent could adsorb larger amount of adsorbate due to the availability of more surface area of the adsorbent. But for each adsorbate (i.e. heavy metal) studied the amount of adsorbate adsorbed after equilibrium per unit weight of adsorbent is different.

The extent of biosorption was limited by metal concentration at high adsorbent concentrations. At constant initial metal concentrations the biosorbent concentration should be low to maximize solid phase metal ion concentration at equilibrium. The results in the present study are in agreement with literature reports indicating lower biosorbed metal concentrations (q) at high adsorbent concentrations (Esposito *et al*, 2001). The primary factor explaining this characteristic is that adsorption sites remain unsaturated during the adsorption reaction, whereas the number of sites available for adsorption site increases by increasing the adsorbent dose.

6.3.3 Effect of pH on the adsorption of metal ions

(i) **Chromium:** The percent removal of Cr (VI) increased with decrease in pH for the different concentrations of Cr (VI) which is typical of oxyanion adsorption on metal hydroxides. Similar optimum pH conditions were seen for all the four adsorbents. Chromium (VI) removal increased from 8.3% at pH 4 to 99.8 at an initial pH of 1.5 for tamarind husk; more than 99% of 10 mg/L of Cr (VI) was removed at pH 2 by bengal gram husk, tur dal husk and coffee husk. The percentage of Cr (VI) adsorbed at optimum pH decreased with increase in the concentration of initial Cr (VI) ions. The amount of chromium adsorbed decreased with increase in pH. But the amount adsorbed increased with increase in initial chromium concentration. Chromium exhibits different types of pH dependent equilibria in aqueous solutions (Rollinson, 1973). The most important of which are the following:

$$H_2CrO_4 \longleftrightarrow HCrO_4^{2-} + H^+$$
 (2)

$$HCrO_4 \longrightarrow CrO_4^{2-} + H^+$$
 (3)

$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + \operatorname{H}_{2}\operatorname{O} \longrightarrow 2\operatorname{HCrO}_{4}$$
 (4)

In acidic solutions, the equilibrium is as follows:

$$HCr_2O_7 \longleftrightarrow H^+ + Cr_2O_7^{2-}$$
 (5)

$$H_2CrO_4 \longrightarrow H^+ + HCr_2O_7^-$$
 (6)

The equilibrium in alkaline pH is given as:

$$\operatorname{Cr}_2\operatorname{O}_7^- + \operatorname{OH}^- \longleftrightarrow \operatorname{HCrO}_4^- + \operatorname{CrO}_4^{2-}$$
 (7)

$$HCrO_4^- + HO^- \leftarrow CrO_4^{2-} + H_2O$$
 (8)

The only species that can exist in solution, above pH 8.0 is CrO_4^{2-} . As the pH is shifted, the equilibrium will also shift; in the pH range 2-6, $HCrO_4^{-}$, and $Cr_2O_7^{-2-}$,

ions are in equilibrium. At still lower pH (pH <2.0) values, $\rm Cr_3O_{10}^-$ and $\rm Cr_4O_{13}^{2-}$ species are formed. Thus the formation of more polymerized chromium oxide species occurs with the decrease in solution pH.

In highly acidic media, the adsorbent surfaces are highly protonated and favour the uptake of Cr (VI) in the anionic form HCrO₄. The removal of Cr (VI) by carbonaceous materials such as saw dust, sugar beet, sugar beet pulp, sugarcane bagasse and maize cob at an optimum pH 2.0 has been reported by Sharma and Forster (1994).

(ii) Nickel (II): The effect of pH on nickel biosorption is illustrated in Figures 75 to 78 for all the four husks. The percentage biosorption and the amount biosorbed are presented in Tables 66 for bengal gram husk, Tables 67 for tur dal husk, Table 69 for tamarind husk and Table 68 for coffee husk. The optimum pH for nickel adsorption for all the husks is 5 to 5.5. Adsorption is high at pH 5.0 and decreases as the pH increases or decreases. At low pH value, the H+ ions compete with metal cation for the exchange sites in the system thereby partially releasing the metal cations (Ajmal *et al.*, 2000). pH affects both cell surface metal binding sites and metal chemistry in water. At low pH values, the functional groups of the biosorbent are closely associated with the hydronium ions and repulsive forces limit the approach of the metal ions. With increasing pH, more functional groups such as amino and carbonyl groups, would be exposed leading to attraction between these negative charges and the metals and hence increases in biosorption on to the surface of adsorbent (Aksu, 2001). The lower uptake at higher pH value is probably due to the formation of anionic hydroxide complexes (Maquieira *et al.*, 1994).

The reaction of nickel ions in the solution with the biomass can be described by the following equilibrium:

$$HnB + Mn + \longrightarrow MB + nH +,$$
 (9)

Where M represents the metal, n its charge and B the biosorptive active centers. According to reaction, the pH should influence the metal ions biosorption because of the competition between the metal and H+ ions for the active biosorption sites.

(iii) Iron (III): The optimum pH for biosorption of ferric iron on to the four husks was observed at pH 2.5. To avoid precipitation of ferric ion as their hydroxides, all the experiments were carried below pH 3.5. The solution pH influences both the metal binding sites as well as metal chemistry in solution. The initial adsorption rates increased with increasing initial pH up to optimum pH values. At higher pH values, Fe (III) precipitated because of the high concentration of OH ions in the adsorption medium (Ozer *et al*, 1999; Sag and Kutsal, 1996) and so adsorption experiments at pH>3 could not be performed. The percentage of Ferric ions adsorbed at pH 2.5 decreased with increasing metal concentration, but the amount of metal ion adsorbed increased with increase in initial iron concentration.

Iron typically enters water bodies in the form of ferrous iron (Fe²⁺), which can be oxidised to ferric iron (Fe³⁺) by the oxygen dissolved in water. The rate of oxidation reaction depends primarily on the pH and on the level of dissolved oxygen in water (DO). At pH <4 and a relatively low dissolved oxygen, the oxidation process to ferric iron is very slow. At pH>4, however Fe²⁺ ions oxidise quickly to Fe³⁺ ions which then react with water producing ferric hydroxide precipitate and acidity

Fe²⁺ +
$$\frac{1}{4}$$
 O₂ + H⁺ \longrightarrow Fe³⁺ + $\frac{1}{2}$ H₂O (10)

Fe
$$^{3+} + 3H_2O$$
 \leftarrow Fe $(OH)_3 + 3H^+$ (11)

If the pH drops below 3, the ferric ions cease to precipitate and remain in water in partially hydrolysed forms.

(iv) Mercury (II): The optimum pH at which mercury was maximally absorbed by all the four husks is 5.5 to 6. The percentage and the amount of mercury adsorbed increased with increase in pH. On increasing the pH from 4, the percentage removal increased and became quantitative over the pH range 5.0 –6.0. It is expected that the adsorption of metals decreases at low pH values because of competition for binding sites between cations and protons (Sahoo *et al*, 1992), while at pH higher than 7, hydroxo species of the metals can be formed and do not bind to the adsorption sites on

the surface of the adsorbent (Kaçar *et al*, 2002). Several other researchers have already reported a strong dependency of heavy metal biosorption on pH (Volesky, 2003; Wase and Forster, 1997).

6.3.5 Adsorption isotherms

Adsorption data for wide ranges of adsorbate concentrations and adsorbent doses have been treated by Langmuir (Langmuir, 1918) and Freundlich (Freundlich, 1907) isotherms, two widely used models. The Langmuir isotherm model is based on the assumption that maximum adsorption corresponds to a saturated monolayer of adsorbate molecules on the adsorbent surface, that the energy of adsorption is constant and that there is no transmigration of adsorbate in the plane of the surface. Langmuir isotherms were obtained by agitating the adsorbent of fixed dose and the adosrbate solution of different concnetrations for a contact time greater than equilibrium time. The Langmuir isotherm represents the equilibrium distribution of metal ions between the solid and liquid phases. The following equation can be used to model the adsorption isotherm:

$$q = q_{max} b C_{eq} / 1 + b C_{eq}$$
 (12)

where q is milligrams of metal accumulated per gram of the biosorbent material; C_{eq} is the metal residual concentration in solution; q_{max} is the maximum specific uptake corresponding to the site saturation and b is the ratio of adsorption and desorption rates (Chong and Volesky, 1995).

When the initial metal concentration rises, adsorption increases while the binding sites are not saturated. The linearised Langmuir isotherm allows the calculation of adsorption capacities and the Langmuir constants and is equated by the following equation.

$$C_{eq}/q = 1/q_{max}.b + C_{eq}/q_{max}$$
 (13)

Thus a plot of C_{eq}/q vs C_{eq} should be linear if Langmuir adsorption were operative, permitting calculation of qmax. The Langmuir isotherm model was followed by all the adsorbates and adsorbents in the present study.

The comparison of sorption capacities of adsorbents used in this study with those obtained in the literature shows that the four husks namely bengal gram husk, tur dal husk, tamarind husk and coffee husk are effective for the removal of metals from aqueous solution.

Table 63 Comparison of adsorption capacity of Chromium (VI) with other adsorbents

Adsorbent	q _{max}	Reference
Rhizopus arrhizus	23.88	Prakasham et al (1999)
Rhizopus nigrificans	99.00	Bai and Abraham (2001)
Chlorella vulgaris	33.80	Cetinkaya et al (1999)
Scenedesmus obliquus	30.20	Cetinkaya et al (1999)
Synechocystis sp.	39.00	Cetinkaya et al (1999)
Cone biomass	201.81	Ucun et al, 2002
Bengal gram husk	91.64	Present work
Tur dal husk	96.05	Present work
Coffee husk	27.73	Present work
Tamarind husk	44.95	Present work

Table 64 Comparison of adsorption capacity of Iron (III) with other adsorbents

Adsorbent		q _{max} (mg/g)	Reference
Industrial b	oiomass	19.2	Chandrashekar et al, 1998
(Aspergillus niger grown on			
wheat bran)			
Streptomyces rimosu	5	125	Selatnia et al, 2004
Chlorella vulgaris		24.49	Aksu et al , 1997
Schizomeris leibleini	i	101.70	Ozer et al , 1999
Zoologea ramifera		65.49	Sag and Kutsal, 1995
Bengal gram husk		72.16	Present work
Tur dal husk		66.63	Present work
Tamarind husk		56.55	Present work
Coffee husk		64.80	Present work

Table 65 Comparison of adsorption capacity of Mercury (II) with other adsorbents

Adsorbent	q _{max} (mg/g)	Reference
Fly ash	2.82	Sen and Dey, 1987
Fly ash	11.0	Banerjee et al, 2004
Fly ash-C	0.63-0.73	Kapoor and Viraraghvan,
		2004
Rice husk ash	9.3	Feng et al, 2004
Bengal gram husk	51.85	Present work
Tur dal husk	196.32	Present work
Tamarind husk	184.39	Present work
Coffee husk	145.73	Present work

Table 66 Comparison of adsorption capacity of Nickel (II) with other adsorbents

Adsorbent	q _{max} (mg/g)	Reference
Coir pith	15.72	Parab <i>et al</i> , 2006
Sphagnum moss peat	9.18	Ho et al , 1995
Baker's yeast	11.40	Padmavathy et al, 2003
Sheep manure waste	7.20	Abu Al-Rub, 2002
Waste tea	18.42	Malkoc and Nuhoglu, 2005
Bengal gram husk	112.22	Present work
Tur dal husk	96.58	Present work
Tamarind husk	111.11	Present work
Coffee husk	54	Present work

The essential characteristics of a Langmuir isotherm can be expressed in terms of a dimensionless constant separation factor or equilibrium parameter RL, which is defined by

$$R_L = 1/1 + bCo$$
 (14)

Where Co is the initial adsorbate concentration (mg/L) and b is the Langmuir constant (L/mg). The parameter indicates the shape of the isotherm as follows:

Table 67 Type of Isotherm for various R_L

R _L	Type of isotherm
$R_L > 1$	Unfavourable
$R_L=1$	Linear
$0 < R_L < 1$	Favourable
$R_L = 0$	Irreversible

The R_L values at different initial adsorbate concentrations (Tables 89 and 90) indicate favorable adsorption for all the adsorbates and adsorbates studied.

The Freundlich equation is basically empirical, but is often useful as a means for data description. Freundlich isotherms were basically obtained by agitating the adsorbate solution of a fixed concentration and the adsorbent of different doses for a contact time greater than the equilibrium time. The Freundlich isotherm is represented by the equation (Freundlich, 1907):

$$q = K_f C_{eq}^{1/n}$$
 (15)

where C_{eq} is the equilibrium concentration (mg/l), q is the amount adsorbed (mg/g) and K_f and n are constants incorporating all parameters affecting the adsorption process, such as adsorption capacity and intensity respectively. The linearised forms of Freundlich adsorption isotherm was used to evaluate the sorption data and is represented as:

$$\ln q = \ln K_f + 1/n \ln C_{eq}$$
 (16)

 $K_{\rm f}$ and n were calculated from the slopes of the Freundlich plots. The Freundlich isotherm basically indicates whether the adsorption proceeds with ease or difficulty. Freundlich isotherm model was obeyed by all the adsorbates under the studied conditions (Figures 119 to 146). These results may be explained if adsorbent surface sites have a spectrum of different binding energies as suggested by Benjamin and Leckie, 1981.

The langmuir and Freundlich constants calculated from the isotherm equations are given in Tables 82 to 85 for the adsorption of metal ions. The magnitude of the exponent 'n' gives the indication of favourability and Kf, the capacity of the adsorbent/adsorbate system. Tables 82 to 85 and Tables 86 to 88 shows that n values for metals were between 1 and 10 under the studied conditions, indicating beneficial adsorption (Yoshida, 1991).

6.3.6 Adsorption dynamics – adsorption rate constant

The rate constant of adsorption is determined from the following first order rate expression given by Lagergren (1898)

$$\log_{10} (qe-q) = \log_{10} q_e$$
- Kad t / 2.303 (17)

where q and qe are amounts of adsorbate adsorbed (mg/g) at time, t (min) and at equilibrium, respectively, Kad is the rate constant of adsorption (l/min). The linear plots of log10 (qe-q) vs t for all the metals were studied at different concentration (Figures 147 to 172) shows the applicability of the above equation. Values of K_{ad} were calculated from the slope of the linear plots and are presented in Tables 91 to 104 for metal ions. The rate constant for the metal ions generally decreased with increase in adsorbate concentration. The rate constant for the adsorption metals is comparable with those in literature (Kadirvelu and Namasivayam, 2003; Periasamy and Namasivayam, 1994).

6.3.7 Desorption and Regeneration studies

Both incineration and land disposal represent possible options for final disposition of spent adsorbent material. However, both methods directly or indirectly pollute the environment. If regeneration of metals from the spent adsorbent were possible then it would not only protect the environment but also help recycle the adsorbate and adsorbent and hence contribute to the economy of wastewater treatment. Desorption studies help elucidating the mechanism adsorption and recovering precious metals from wastewater and adsorbent.

Desorption of Cr (VI) from chromium loaded adsorbents increased with increase in the initial pH. At pH 12.5, 32.8% of Cr (VI) was desorbed from tamarind husk;

followed by 18.95% from Coffee husk and < 3% for bengal gram and tur dal husk. Among the various adsorbents, maximum desorption was seen in Tamarind husk>Coffee husk> Bengal gram husk>Tur dal husk. Iron (III) was removed maximally at an initial pH of 12.5. For the metal cations, Ni (II) and Hg (II), the percent desorption increased with decrease in pH and reached a maximum of 63.21 and 79.58% respectively at pH 1.0 for tamarind husk. At acidic conditions, H+ ions protonate the adsorbent surface by replacing the adsorbed metal ions on the adosrbent surface leading to the desorption of the positively charged metal ion species. Figures 173 to 176 show the effect of pH on the desorption of metal ions.

Desorption does not help to recycle the used adsorbents. Hence, utilization of dried adsorbents in an appropriate combustor such as the boiler at the dye works may be an efficient means of disposal. The gaseous products of combustion should be trapped using suitable solvents to prevent air pollution.

6.4 Mechanism of adsorption

6.4.2 Metal Adsorption:

(i) **Chromate adsorption:** When chromate ions are introduced into the system containing the adsorbent, they may be adsorbed into the positively charged surface (Sharma and Forster, 1994).

$$C_xOH_2^- + HCrO_4^- \qquad CxO_2H_3CrO_3^-$$
 (18)

Cr (VI) removal on the adsorbents can also probably be an anion exchange reaction:

$$C_{x}OH^{+} + HCrO_{4}^{-} \qquad Cx \left[HCrO_{4}\right]^{+} + OH^{-}$$
(19)

Other groups which are naturally present on the lignocellulosic wastes (like the adsorbents used in the present study), such as CxO and CxO₂ may remove HCrO₄⁻ by the formation of oxo functional groups on the adsorbent surface:

$$CXO + HCrO_4^- + H_2O \qquad CXOHCrO_3^- + 2OH^-$$
 (20)

$$CxO_2 + HCrO_4 + H_2O \qquad CXO_2 + HCrO_3 + 2OH \qquad (21)$$

Very low desorption of Cr (VI) from Cr (VI) laden adsorbent at alkaline pH shows that most of the HCO4 seems to be irreversibly bound with the adsorbent (Eq 18).

(ii) Adsorption of Fe (III), Hg (II) and Ni(II): Adsorption of metal cation on the adsorbent depends upon the nature of the adsorbent surface and species distribution of the cation. Species distribution mainly depends on the pH of the system. The metal species that exist in solution are the free metal ions and their hydroxides. The percent removal of metal ion decreased as the pH of the system was lowered, because protons compete with the metal ion for ion sorption sites on the adsorbent surface as well as the concomitant decrease of negative charge on the same surface. This is true for the adsorption of nickel and mercury ions but for ferric, the increase in pH resulted in the formation of ferric hydroxide and hence a low pH of 2.5 was found to be optimum. In the plots of percent adsorption vs pH, there is a sharp increase in adsorption over a narrow range of pH, and this is consistent with the attainment of a pH value at which the adsorption of metal hydroxides becomes possible (MOH+). It was proposed by Davis and Leckie, 1978 that the most likely forms of the adsorbed ions are M²⁺ and M (OH)-. Hence the possible adsorption reactions include the following:

$$CxOH^{+} + M^{2+}$$
 $CxO M^{2+} + H^{+}$ (22)

$$CxOH++MOH+$$
 $CxOMOH^{+}+H^{+}$ (23)

$$2CxOH + + M^{2+}$$
 $(CxO)_2M^{2+} + 2H^{+}$ (24)

$$CxOH+ + M^{2+} + H2O$$
 $CxOMOH^{+} + 2H^{+}$ (25)

$$CxO + M^{2+}$$
 $CxO M^{2+}$ (26)

$$CxO + MOH^{+}$$
 $CxOMOH^{+}$ (27)

From the discussion we can conclude that chemisorption is the main mode of mechanism by which metals are adsorbed to the four adsorbents – BGH, TDH, TH and CH.

7.0 CONCLUSIONS

The present investigation shows that the agricultural by-products like bengal gram husk, tur dal husk, and tamarind husk can be used as an effective adsorbent for the treatment of wastewaters containing metals like chromium (VI), iron (III), nickel (II) and mercury (II). Adsorption dynamics, isotherms, pH effect and adsorbent dosage on the removal of metals for all the adsorbates were examined. In addition desorption of the metals from the loaded adsorbents was also carried out.

The uptake of metals increased with increase in the agitation time till the equilibrium was reached. At any contact time, increase in initial adsorbate concentration decreased the percent adsorption and increased the amount of adsorbate uptake (q) per unit weight of the adsorbent.

The effect of adsorbent dosage on the adsorption of metals showed that the percentage of metal removed increased with increase in adsorbent dosage due to increased adsorption surface area. For all the adsorbents studied adsorbent dosage of 1g - 2g/L was sufficient for adsorption of 90% of the initial metal concentration.

Irrespective of the type of the adsorbent, the optimum pH for the removal of chromium (VI) was 2; for iron (III) 2.5; for mercury (II) 5.5 and nickel (II) was maximally absorbed at pH 6.0. The amount of the metal removed at optimum pH increased with increase in initial metal concentration but the percentage absorbed decreased with increase in initial metal concentration

Adsorption data for wide ranges of adsorbate concentrations and adsorbent doses were treated by Langmuir and Freundlich isotherms. All the adsorbents and adsorbates followed the Langmuir and Freundlich isotherms. Comparison of the adsorption capacity of the four adsorbents with that cited in literature reveals that bengal gram husk, tur dal husk, tamarind and coffee husk had a higher biosorption capacity than the adsorbents reported in literature.

Values of the equilibrium parameter (R_L) from Langmuir isotherm and n values from the Freundlich isotherm indicate that the adsorption process is favorable for all the metals. The equilibrium data also fit well with the Freundlich adsorption isotherm for all the adsorbents and adsorbates (metals) studied.

The Lagergren rate constant of absorption for different concentrations for the metals by the adsorbents used in the study are generally in the range of 9.00×10^{-3} to 1.03×10^{-1} L/min.

Desorption and regeneration studies of the adsorbates showed that regeneration and recovery of the adsorbates is possible. Chemisorption/ion exchange was the main mechanism by which the adsorbates (metals) were attached to the adsorbents. Physical adosrotion played a minimal role in the process. Since about 70 % of the metals still remained on sorbents, it indicates that most of metals are able to form strong bonds with the adsorbents.

The infrared spectral analysis of the adsorbents showed that Carbon bonded with hydrogen and oxygen atoms played a major role in the adsorption of metals. The absorption spectra revealed that –C-O, C-N and C=O bonds were predominant in the surface of the adsorbents and played a major role in the adsorption process.

The analysis of the carbon, hydrogen and nitrogen content of the husk, showed relatively low percentage of nitrogen, revealing the low content of protein in the adsorbents. This is advantageous over the protein rich algal and fungal biomass projected as metal biosorbents, since proteinious materials are likely to putrefy under moist conditions. Further, most metal sorption reported in literature is based on algal and fungal biomass, which must be cultured, collected from their natural habitats and pre-processed, if available as discards and transported under special conditions, thus introducing the factor of additional costs. In contrast, BGH, TDH, TH and CH as agro-industrial wastes have negligible cost and have also proved to be an efficient biosorbent for the removal of metals. Furthermore, these adsorbed metal can be easily desorbed and the biomass be incinerated for final disposal. These biosorbents are of low cost; its utility will be economical and can be viewed as a part of a feasible waste management strategy.

7.0 Acknowledgement

We thank the Ministry of Science and Technology, DST, Government of India for the financial assistance.

8.0 References

- 1 Abdel-Jawad M., Al-Shammari S and Al-Sulaimi J. 2002, Non-conventional treatment of treated municipal wastewater for reverse osmosis, *Desalination*, Vol 142, 1 pp 11-18.
- Abu Al-Rub F., Kandah M and Aldabaibeh N., 2002, Nickel removal from aqueous solutions using sheep manure wastes, *Eng. Life Sci.* 2, pp. 111–116.
- Abu Al-Rub F., Kandah M.and Aldabaibeh N 2002, Nickel removal from aqueous solutions using sheep manure wastes, *Eng. Life Sci.* 2, pp. 111–116.
- 4 Ahalya N. and Ramachandra T.V. (2002) Restoration of wetlands Feasibility Aspects of Biological Restoration presented at the National Conference on Aquatic Restoration and Biodiversity Feb 15-16 2002 in Kongunadu Arts and Science College, Coimbatore, India.
- 5 Ahalya N, Kanamadi RD and Ramachandra TV 2006, Biosorption of Iron (III) using the husk of *Cicer arientinum*. *Indian Journal of Chemical Technology*, 13, pp 122-127
- Ahalya N, Ramachandra T.V., Kanamadi R.D 2003, Biosorption of heavy metals, *Journal of Chemistry and Environment*, 7(4): 71-79.
- Ahalya N, Ramachandra TV and Kanamadi RD, 2005. Biosorption of Chromium (VI) from aqueous solutions by the husk of bengal gram (Cicer arientinum). *Electronic Journal of Biotechnology (Online)* 15 December 2005.
- 8 Ahalya N, Ramachandra TV and Kanamadi RD, 2006. Cr (VI) and Fe (III) Removal using *Cajanus Cajan husk*. Journal of Environmental Biology (*In press*).
- 9 Ahalya N, Ramachandra TV and Kanamadi RD, 2006. Removal of hexavalent chromium using coffee husk. *Bioresource Technology* (Communicated)
- 10 Ajmal M., Khan A.H., Ahmad S.and Ahmad A. 1998. Role of sawdust in the removal of copper(II) from industrial wastes *Water Res.* 32, pp. 3085–3091.
- 11 .Al-Asheh S. and Duvnjak Z., 1997, Sorption of cadmium and other heavy metals by pine bark, *Adv. Environ. Res.* 1 pp. 194.
- 12 Alves M. M., Gonzaa lez C. G., Guedes de Carvalho R., Castanheira J. M., Sol Pereira M. C. and Vasconcelos L. A. T. (1993) Chromium removal in tannery wastewaters polishing by *Pinus sylverstris* bark. *Water Res.* 27(8), 1333-1338.
- Angelidis T, Fytianos, K. and Vasilikiotics, G, 1989. Lead recovery from aqueous solution and wastewater by cementation utilising an iron rotating disc. *Resources, Conservation and Recycling*, 2, pp131-138.
- 14 Angelidis, T., Fytianos, K. and Vasilikiotics, G. 1988. Lead removal from wastewater by cementation utilising a fixed bed of iron spheres. *Environ. Pollut.*, 50, pp 243-251.
- 15 Anita Iyer, and Bhavanath Jha, 2005. Biosorption of heavy metals by a marine bacterium. *Marine Pollution Bulletin*, 50(3), pp 340-343.
- Annachhatre A.P., Win N.N., Chandrkrachan S.G, in: W.J. Stevens, M.S. Rao, S. Chandrkrachang (Eds.), Proceedings of the Second Asia-Pacific Symposium, Asian Institute of Technology, Bangkok, Thailand, 1996, pp. 169–173.
- 17 Anon 1978, Heavy Metal Removal? Try starch xanthate. *Prod. Finishing*, 31, 72-74

- 18 Apel, M.L., and A.E. Torma. 1993. Determination of kinetics and diffusion-coefficients of metal sorption on Ca-alginate beads. *Can. J. Chem. Eng.* 7, pp:652–656.
- 19 Asma Saeed, M., Waheed Akhter and Muhammed Iqbal, 2005, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent.. *Separation and Purification Technology*. 45(1), pp 25-31.
- 20 Aygün A., Yenisoy-Karakas S. and Duman I., 2003, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, *Micropor. Mesopor. Mater.* 66, pp. 189–195.
- Ayla Ozer, Dursun Ozer, H. Ibrahim Ekiz 1999, Application of Freundlich and Langmuir models to multistage purification process to remove heavy metal ions by using *Schizomeris leibleinii*. *Process Biochemistry* 34, pp 919–927.
- Babel S. and Kurniawan, T.A. 2003. Low-cost adsorbents for heavy metals uptake from contaminated water: a review, *J. Hazardous Mater*. B97, pp. 219–243.
- Bailey R. P., Bennett T. and Benjamin M. M. 1992 Sorption onto and recovery of Cr (VI) using iron-oxide-coated sand. Water Sci. Technol. 26(5-6), pp 1239-1244.
- 24 Bailey S.E., Olin T.J., Bricka M and Adrian D.D., 1999, A review of potentially low-cost sorbents for heavy metals, *Water Res.* 33, pp. 2469–2479.
- 25 Banat F., Al-Asheh S. and Al-Makhadmeh L, 2003, Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters, *Process Biochem.* 39, pp. 193–202.
- 26 Banerjee S S, Joshi M V and Jayaram R V. 2004, Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash, Sep. Sci. Technol. 39, pp. 1611–1629.
- 27 Basci Nurgul, Kocadagistan Erdem and Kocadagistan Beyhan, 2004, Biosorption of copper (II) from aqueous solutions by wheat shell, *Desalination*, 164(2), pp 135-140.
- Beliles R.P., The lesser metals. In: F.W. Oehme, Editor, Toxicity of Heavy Metals in the Environment, Part 2, Marcel Dekker, New York (1979), p. 383.
- Benjamin, M.M. and Leckie, J.O 1981. Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide. *J. Colloid Interface Sci.* 79, pp 209-221.
- 30 Berglund F. and Bertin M.(1969), Chemical Fallout, Thomas, Spring field, IL.
- 31 Beveridge, T. J. and Doyle, R. J. (1989). Metal Ions and Bacteria. John Wiley Sons, New York.
- 32 Beveridge, T.J. 1986. The immobilisation of soluble metals by bacterial walls, in Biotechnology and Bioengineering Symposium No. 16: Biotechnology for the Mining, Metal –Refining and Fossil-Fuel Processing Industries, Ehrlich, H.L. and Holmes, D.S., (eds), J.Wiley Interscience, New York, 127-140.
- 33 Brady and Duncan, J.R. 1993. Bioaccumulation of cations by Sacchromyces cerevisae in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, warrendale, PA, 35-44.
- 34 Brady, D. and Duncan, J. R., in *Biohydrometallurgical Technologies*(eds Torma, A. E., Apel, M. L. and Brierley, C. L.), The Minerals, Metals and Materials Society, TMS Publication, Wyoming, USA, 1993, vol. II, pp. 711–723.
- 35 Brierley, C.L. and Brierley, J.A. 1993. Immobilisation of biomass for industrial application of biosorption in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, warrendale, PA, 35-44.
- 36 Brierley, J.A. and Vance, D.B. 1988. Recovery of precious metalsby microbial biomass, in BioHydrometallurgy: Proceedings Internat. Symp., Norris, P.R. and Kelly D.P., (eds), Sci Technol Letters, Kew, Surrey, U.K., 477-86.

- 37 Brierley, J.A., Brierley, C.L. and Goyak G.M.1986. AMT-BIOCLAIM: A new wastewater treatment and metal recovery technology, in Fundamental and Applied Biohydrometallurgy, Lawrence, R.W., Branion, R.M.R. and Ebner, H.G., (eds), Elsevier, Amsterdam, The Netherlands, 291-304.
- 38 Brierley, J.A., Brierley, C.L. and Goyak G.M.1986. AMT-BIOCLAIM: A new wastewater treatment and metal recovery technology, in Fundamental and Applied Biohydrometallurgy, Lawrence, R.W., Branion, R.M.R. and Ebner, H.G., (eds), Elsevier, Amsterdam, The Netherlands, 291-304.
- Brigatti M.F., Campana G., Medici L. and Poppi L. 1996. Influence of layer charge on Zn²⁺ and Pb²⁺ sorption by smectites. *Clay Miner*. 31, pp. 477–483.
- 40 Brown P.A., Gill S.A and Allen S.J., 2000, Metal removal from wastewater using peat, *Water Res.* 34, pp. 3907–3916.
- 41 Brown Pauline A., Brown Joseph M. and Allen Stephen J. 2001, The application of kudzu as a medium for the adsorption of heavy metals from dilute aqueous wastestreams. *Bioresource Technology*, 78(2) pp 195-201.
- 42 Brown Pauline, Atly Jefcoatb I, Dana Parrisha, Sarah Gilla and Elizabeth Graham. 2000. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. *Advances in Environmental Research*, 4 (1), pp 19-29.
- 43 Bryant P. S., Petersen J. N., Lee J. M. and Brouns T. M. 1992 Sorption of heavy metals by untreated red sawdust. *Appl. Biochem. Biotechnol.* 34-35, pp 777-788.
- 44 Bumpus, J.A., Mileski, G., Brock, B., Ashbaugh, W. and Aust, S.D., 1991. Biological oxidations of organic compounds by enzymes from a white rot fungus. *Innovative Hazard. Waste Treat. Technol. Ser.* 3, pp. 47–54.
- 45 Cadena F., Rizvi R. and Peters R. W. 1990, Feasibility studies for the removal of heavy metals from solution using tailored bentonite. In Hazardous and Industrial Wastes, Proceedings of the Twenty-Second Mid-Atlantic Industrial Waste Conference, Drexel University, pp. 77-94.
- 46 Carrasco-Marin F., Alvarez-Merino M.A and Moreno-Castilla C., 1996 Microporous activated carbons from a bituminous coal, *Fuel* 75, pp. 966–970.
- 47 Case, O.P. Metallic recovery from wastewaters utilising cementation, EPA-270/2-74-008, U.S. Washington DC (1974).
- 48 Çay. S, Uyanık A and ÖzaImageık A.,2004, Single and binary component adsorption of copper(II) and cadmium(II) from aqueous solutions using teaindustry waste. Separation and Purification Technology, 38(3), pp 273-280.
- 49 Cetinkaya G, Donmez Z, Aksu Z, Ozturk A, and Kutsal T. 1999, A comparative study on heavy metal biosorption characteristics of some algae. *Process Biochemistry*, 34, pp 885-892.
- 50 Chandra Sekhar K, Subramanian S, Modak JM and Natarajan KA, 1998, Removal of metal ions using an industrial biomass with reference to environmental control. *Int.J.Miner.Process.* 53, pp 107-120.
- 51 Chen.X.H., Gosset T and Thevenot D.R.. 1990. Batch copper ion binding and exchange properties of peat. *Water Res.* 24, pp. 1463–1471.
- 52 Cheng J., Subramanian, K.S., Chakrabarti, C.L., Guo, R., Ma, X., Lu, Y.J. and Pickering, W.F. 1993 Adsorption of low levels of Pb (II) by the granular activated carbon. *J. Environ. Sci. Hlth.*, A28, pp 51-72.
- 53 Chojnackaa K, Chojnackib A and Górecka H, 2005, Biosorption of Cr³⁺, Cd²⁺ and Cu²⁺ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. *Chemosphere*, 59(1), pp 75-84.
- 54 Choong Jeon and Wolfgang H. Höll. 2003. Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Research, 37(19), pp 4770-4780.
- 55 Choong Jeon, Jae Yeon Park and Young Je Yoo. 2002. Characteristics of metal removal using carboxylated alginic acid. *Water Research*, 36(7), pp 1814-1824.

- 56 Chubara Natalia, Carvalho Jorge R and Correia M. Joana Neiva., 2003, Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 230(1-3), pp 57-65.
- 57 Çigdem Arpa, Emel BaImageyilmaz, Sema BektaImage, Ömer Genç and Yuda Yürüm. 2000. Cation exchange properties of low rank Turkish coals: removal of Hg, Cd and Pb from waste water. *Fuel Processing Technology*, 68(2) pp 111-120.
- 58 Connell, D.W., Miller. G.J 1984. Chemistry and Ecotoxicology of Pollution. John Wiley & Sons, NY.
- 59 Cook, S.M.F. and Linden, D.R., 1997. Use of rhodamine WT to facilitate dilution and analysis of atrazine samples in short-term transport studies. *J. Environ. Qual.* 26, pp. 1438–1441.
- 60 Costan, G., N. Bermingham, C. Blaise and J.F. Ferard. 1993. Potential ecotoxic effect probe (PEEP); a novel index to assess and compare the toxic potential of industrial effluents. *Environ. Toxic. Water Qual.* 8, pp 115-140.
- 61 Cotoras, D., Viedma, P. and Pimentel, J. 1993. Biosorption of metal ions by attached bacterial cells in a packed bed reactor in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, Warrendale, PA.
- 62 Couillard D., 1994, The use of peat in wastewater treatment, *Water Res.* 28, pp. 1261–1274.
- 63 Crini G. and Morcellet M., 2002 Synthesis and applications of adsorbents containing cyclodextrins, *J. Sep. Sci.* 25, pp. 1–25.
- 64 Crini G., Janus L., Morcellet M., Torri G. and Morin N., 1999, Sorption properties toward substituted phenolic derivatives in water using macroporous polyamines beta-cyclodextrins polymers, *J. Appl. Polym. Sci.* 73, pp. 2903–2910.
- Darnall, D.W., Greene, B. and Gradea-Torresday, J. 1988. Gold Binding to algae in BioHydrometallurgy: Proceedings Internat. Symp., Norris, P.R. and Kelly D.P., (eds), Sci Technol Letters, Kew, Surrey, U.K., 487-98.
- Darnall, D.W.; Greene, B.; Henzil, M.T.; Hosea, J.M.; Mcpherson, R.A.; Sneddon, J. and Alexander, M.D. Selective recovery of gold and other metal ions from an algal biomass. Environment Science and Technology, 1986, 20, pp. 206-208.
- 67 Davis J A and Leckie JO, 1978. Surface ionisation and complexation at the oxide/water interface, II. Surface properties of amorphous ironoxyhydroxide and adsorption of metal ions. *J. Colloid and Interface Sci.*, 67, pp 90-107.
- Davis, T.A., Volesky, B. and Mucci, A. 2003. A review of Biochemistry of heavy metal biosorption by brown algae. *Wat.Res.* 37 (18), pp 4311-4330.
- 69 Davis, TA, Volesky, B. and Vieira, RHSF. 2000. Sargassum seaweed as biosorbent for heavy metals. Wat.Res . 34, pp 4270-4278.
- De Voogt, P., B. Van Hattum, J.F. Feenstra, and J.W. Copius Peereboom. 1980. Exposure and health effects of cadmium. *Toxicol. Environ. Chem. Rev.* 3:89-109.
- 71 Delval F., Crini G., Janus L., Vebrel J. and Morcellet M., 2001, Novel crosslinked gels with starch derivatives. Polymer-water interactions. Applications in waste water treatment, *Macromol. Symp.* 166, pp. 103–108.
- 72 Derbyshire F., Jagtoyen M., Andrews R., Rao A., Martin-Gullon I and Grulke E. Carbon materials in environmental applications. In: L.R. Radovic, Editor, Chemistry and Physics of Carbon Vol. 27, Marcel Dekker, New York (2001), pp. 1–66
- 73 deRome, L. and Gadd, G.M. 1987. Copper adsorption by Rhizopus arrhizus Cladospoium resinae and Penicillium italicum. *Applied Microbiology and Biotechnology*, 26, pp 84-90.
- 74 Deshkar A. M., Bokade S. S. and Dara S. S. 1990, Modified Hardwickia Binata bark for adsorption of mercury (II) from water. *Water Res.* 24(8), pp 1011-1016.

- 75 Dikshit V. P. 1989, Removal of chromium (VI) by adsorption using saw-dust. *Nat. Acad. Sci. Lett.* 12(12), pp 419-421.
- 76 Dilek F. B. Erbay A and Yetis U 2002, Ni(II) biosorption by *Polyporous* versicolor. Process Biochemistry, 37(7), pp 723-726
- 77 Dinesh Mohan and Kunwar P. Singh, 2002. Single- and multi-component adsorptionnext term of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. *Water Research*, 36 (9), pp 2304-2318.
- 78 Eaton A. D., Clesceri L. S. and Greenberg A. E., 1995 Standard Methods for the Examination of Water and Wastewater 19th ed., American Public Health Association Washington, DC, pp 34-39.
- 79 EPA, Development document for effluent limitation guidelines and standards for the inorganic chemicals manufacturing point source category, USEPA, Effluent Guidelines Division, Office of Water and Waste Management, Washington, DC (1980)
- 80 Erdem Mehmet and Özverdi Arzu. 2005, Lead adsorption from aqueous solution onto siderite. *Separation and Purification Technology*, 42(3), pp 259-264.
- Erdem, N. Karapinarb and R. Donat. 2004. The removal of heavy metal cations by natural zeolites. *Journal of Colloid and Interface Science*, 280 (2), pp 309-314.
- 82 Esposito, F. Pagnanelli, A. Lodi, C. Solicio and F. Veglio, 2001, Biosorption of heavy metals by *Sphaerotilus natans*: an equlibrium study at different pH and biomass concentrations, *Hydrometallurgy* 60, pp. 129–141.
- Farajzadeh Mir Ali and Monji Akbar Boviery, 2004, Adsorption characteristics of wheat bran towards heavy metal cations. *Separation and Purification Technology*. 38(3), pp197-207.
- Fattahpour Sedeh I., Igsell P., Ringqvist L and Lindström E.B, 1996, Comparison of metal adsorption properties and determination of metal adsorption capacities of different peat samples. *Resource Environ Biotechnol* 1, pp. 111–128.
- 85 Feng O, Lin O, Gong F, Sugita S and Shoya M, 2004. Adsorption of lead and mercury by rice husk ash. *Journal of Colloid and Interface Science*, 278 (1), pp 1-8
- 86 Figueira, MM, Volesky, B, Azarian, K & Ciminelli, VST. 1999. Multimetal biosorption in a column using Sargassum biomass in Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Internat. Biohydrometallurgy Symposium Proceedings, 1999, volume B, Ballester, A. & Amils, R. (eds.) Elsevier Sciences, Amsterdam, The Netherlands pp.503-512.
- Figueira, MM, Volesky, B, Ciminelli, VST and Roddick, FA. 2000. Biosorption of metals in brown seaweed biomass. *Wat. Res* . 34, pp 196-204.
- Figueira, MM, Volesky, B. & Ciminelli, VST. 1997. Assessment of interference in biosorption of heavy metals. *Biotechnol. Bioeng.* 54, pp 344-349.
- 89 Figueira, MM, Yang, J, Volesky, B & Camargos, ERS. 1995. Interference of Fe in the Cd uptake by Sargassum biomass. Biohydrometallurgical Processing, Vol.2, Proc. Internat. Biohydromet. Symp., Jerez, CA, Vargas, T, Toledo, H & Wiertz, JV (eds.) Univ. Chile, Santiago, Chile, p. 187-194.
- 90 Flynn C. M. Jr., Carnahan T. G. and Lindstrom R. E., 1980, Adsorption of heavy metal ions by xanthated sawdust. Report of Investigations # 8427. United States Bureau of Mines.
- 91 Fourest, E. and Roux, J.C. 1992. Heavy metal biosorption by fungal mycelial byproducts: mechanism and influence of pH. *Appl. Microbiol. Biotechnol.* 37, pp 399-403.
- 92 Fourest, E. and Roux, J.C. 1992. Heavy metal biosorption by fungal mycelial byproducts: mechanism and influence of pH. *Appl. Microbiol. Biotechnol.* 37, 399-403.

- 93 Freeland G. N., Hoskinson R. M. and Mayfeld R. J. 1974, Adsorption of mercury from aqueous solutions by polyethylenimine-modified wool fibers. *Envir. Sci. Technol.* 8(10), pp 943-944.
- 94 Freundlich H, 1907. Ueber die Adsorption in Loesungen. Z. physik Chem, 57, pp 385-470.
- 95 Friis, N. and Myers-Keith, P. 1986. Biosorption of uranium and lead by Streptomyces longwoodensis. *Biotechnol. Bioeng.* 28, pp 21-28.
- 96 Gadd GM and Griffiths AJ, 1978. Microorganisms and heavy metal toxicity. *Microb. Ecol.* 4, pp303-317.
- 97 Gadd GM and White C 1993, Microbial treatment of metal pollution A working biotechnology. *TIBTech*.11, pp 353-359.
- 98 Gadd, G. M. (1988). "Accumulation of metals by microorganisms and algae." In: Biotechnology A Comprehensive Treatise (H.J. Rehm, ed.). VCH Verlagsgesellschaft, Weinheim, pp. 401–433
- 99 Gadd, G.M., White, C. and de Rome, L. 1988. Heavy metal and radionucleide uptake by fungi and yeasts, in BioHydrometallurgy: Proceedings Internat. Symp., Norris, P.R. and Kelly D.P., (eds), Sci Technol Letters, Kew, Surrey, U.K., 421-36
- 100 Gadd, Geoffrey M. 1990 Heavy metal accumulation by bacteria and other microorganisms. *Experientia*, 46, pp 834-840.
- 101 Gee, A.R. and Dudeney, A.W.L. 1988. Adsorption and crystallisation of gold at biological surfaces, in BioHydrometallurgy: Proceedings Internat. Symp., Norris, P.R. and Kelly D.P., (eds), Sci Technol Letters, Kew, Surrey, U.K., 437-451.
- 102 Gourdon R, Rus E, Bhende S and Sofer S (1990) Mechanism of cadmium uptake by activated sludge. *Appl. Microbiol. Biotechnol.* 34 274-278.
- 103 Graham N., Chen X.G and Jeyaseelan S., 2001, The potential application of activated carbon from sewage sludge to organic dyes removal, *Water Sci. Technol.* 34, pp. 245–252.
- 104 Greene B. and Darnall D.W. 1990. Microbial oxygenic photoautotrophs for metalion binding. In: Microbial mineral recovery (Ed. by H.L. Ehrlich & C.L. Brierley), pp. 277-302. McGraw-Hill, New York.
- 105 Groffman, A., Peterson, S and Brookins, D. 1992 Removing lead from wastewater using zeolite. *Wat. Environ. Technol.*, 4, 54-59.
- 106 Guibal E., Larkin A., Contandriopoulos Y., Gillet D., in: C. Rong-Huei, C. Hsing-Chen (Eds.), Proceedings of the Third Asia-Pacific Symposium on Chitin and Chitosan, National Taiwan Ocean University, Keelung, Taiwan, 1998, pp. 456–461.
- 107 Guibal E., Saucedo I., Janssin-Charrier M., Delanghe B. and Le Cloirec P.1994, Uranium and vanadium sorption by chitosan and derivatives. *Water Sci. Tech.* 30, pp. 183–190.
- 108 Gupta D.C and Tiwari U.C. 1985. Aluminum oxide as adsorbent for removal of hexavalent chromium from aqueous waste *Ind. J. Environ. Health* 27, pp. 205– 215
- 109 Gupta G.S., Prasad G. and Singh V.H., 1990, Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal, *Water Res.* 24, pp. 45–50.
- 110 Gupta G.S., Shukla S.P., Prasad G and Singh V.N., 1992, China clay as an adsorbent for dye house wastewater, *Environ. Technol.* 13, pp. 925–936.
- 111 Gupta V. K., Shrivastava A. K. and Neeraj Jain. 2001. Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species. *Water Research*. 35 (17), pp 4079-408.
- 112 Hall K.R., Eagleton L.C., Acrivos A and Ver Meulen T, 1966, Pore- and Solid-Diffusion kinetics in fixed bed adsorption under constant pattern conditions. *Ind. Eng. Chem. Fund.* 5 (2) pp 212 223.

- 113 Hanway, J.E., Mumford, R.G. and Mishra P.N. Treatment of industrial effluents for heavy metal removal using the cellulose xanthat process in 71st Annual meeting of the American Institute of Chemical Engineeres, Miami, Florida (1978).
- 114 Ho Y. S., Wase D. A. J. and Forster C. F. 1994. The adsorption of divalent copper ions from aqueous solution by sphagnum moss peat. *Trans. IChemE* 72B(3), pp 185-194.
- 115 Ho Y.S., John Wase Y.S. and Forster C.F., 1995, Batch nickel removal from aqueous solution by Sphagnum moss peat, *Water Res.* 29(5), pp. 1327–1332.
- 116 Holan Z. R., Volesky B. and Prasetyo I. 1993. Biosorption of cadmium by biomass of marine algae. *Biotechnol. Bioeng.* 41(8), pp 819-825.
- 117 Holan, Z.R. and Volesky, B. 1995, Accumulation of cadmium, lead and nickel by fungal and wood biosorbents. *Appl. Biochem. Biotechnol.* 53, pp 133-146.
- 118 Holan, ZR and Volesky, B., 1994. Biosorption of lead and nickel by biomass of marine algae. *Biotech Bioeng.* 43, pp 1001-9.
- 119 Horikoshi T, Nakajima A, Sakaguchi T 1981, Studies on the accumulation of heavy metal elements in biological systems, XIX: Accumulation of uranium by microorganisms. *Eur J Appl Microbiol Biotechnol* 12, pp 90.
- 120 Hsuan-Liang Liu, Bor-Yann Chen, Yann-Wen Lana and Yang-Chu Cheng, 2004, Biosorption of Zn(II) and Cu(II) by the indigenous *Thiobacillus thiooxidans*. *Chemical Engineering Journal*, 97(2-3), pp 195-201.
- 121 Huang C.P, Chung Y.C. and Liou. M.R 1996, Adsorption of Cu(II) and Ni(II) by pelletized biopolymer *J. Hazard. Mater.* 45, pp. 265–277.
- 122 Huang C.P., and Bowers A.R., The development of an activated carbon process for the treatment of chromium (VI) containing plating wastewater. In: 2nd Conference on Advanced Pollution Control for the metal finishing industries. EPA 600/8-79-014, Cincinnati, Ohio, (1979). pp:114-122.
- 123 Illan Gomez M.J., Garcia-Garcia A., Salinas-Martinez de Lecea C and Linares-Solano A., 1996, Activated carbon from Spanish coal. 2. Chemical activation, *Energy Fuel* 10, pp. 1108–1114.
- 124 Iqbal M., Saeed A.and Akhtar N. 2002, Petiolar felt-sheath of palm: a new biosorbent for the removal of heavy metals from contaminated water. *Bioresource Technology*. 81(2), pp 151-153.
- 125 Jasinski S.M., USGS Minerals Information, US Geological Survey Mineral Commodity Summary 2001, January 2002, ftp://minerals.usgs.gov/minerals/pubs/commodity/peat/510302.pdf.
- 126 Jha I.N., Iyengar L and Rao A.V.S.P. 1988. Removal of cadmium using chitosan. *J. Environ. Eng.* 114, pp. 962–974.
- 127 Johnson P. D., Watsona M. A., Browna J and Jefcoat I. A., 2002, Peanut hull pellets as a single use sorbent for the capture of Cu (II) from wastewater. Waste Management, 22(5), pp 471-480.
- 128 Jolley, R.A. and Forstner, C.F.1985 The kinetics of sulphide oxidation. *Environ. Technol. Lett.*, 6, 1-10.
- 129 Juang R.S., F.C. Wu F.C. and Tseng R.L., 2002, Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption, *Colloid Surf. A: Physicochem. Eng.* Aspect 201, pp. 191–199.
- 130 Juang R.S., Tseng R.L. and Wu F.C., 2001, Role of microporosity of activated carbons on their adsorption abilities for phenols and dyes, *Adsorption* 7, pp. 65–72.
- 131 Juang R.S., Tseng. R. L, Wu F.C and Lin S.J., 1996, Use of chitin and chitosan in lobster shell wastes for colour removal from aqueous solutions, *J. Environ. Sci. Health* A 31, pp. 325–338.
- 132 Juang R.S., Wu F.C. and R.L. Tseng, 2002, Use of chemically modified chitosan beads for sorption and enzyme immobilization, *Adv. Environ. Res.* 6, pp. 171–177.

- 133 Kabadasil, I., Tünay, O. and Orhon, D., 1999. Wastewater control and management in a leather tanning district. *Water Sci. Technol.* 40/1, pp. 261–267.
- 134 Kaçarv Y., Arpa Ç., Tan S., Denizli A., Genç Ö and Arica M.Y., 2002, Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactived *Phanerochaete chrysosporium*, *Process Biochem.* 37, pp. 601–610.
- 135 Kadirvelu K and Namasivayam 2003 Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv Environ. Res. Vol. 7, No. 2, pp 471-478.
- 136 Kadirvelu K., C. Karthika, N. Vennilamani and S. Pattabhi 2005. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: Kinetic and equilibrium studies. *Chemosphere*, 60 (8), pp 1009-1017.
- 137 Kadirvelu K., Faur-Brasquet C and Le Cloirec P., 2000, Removal of Cu (II), Pb (II) and Ni (II) onto activated carbon cloth, *Langmuir* 16, pp. 8404–8409.
- 138 Kadirvelu K., Preparation and characterization of activated carbon, from coir pith and its application to metal bearing wastewater, Ph.D. Thesis, Bharathiar University, Coimbatore, India, 1998.
- 139 Kapoor A and Viraraghavan T. 1992, Adsorption of mercury from wastewater by fly ash, *Adsorpt. Sci. Technol.* 9, pp. 130–147.
- 140 Kapoor A. and Viraraghavan T. 1996 Treatment of metal industrial wastewater by y ash and cement ation. *J. Environ. Eng.* ASCE 122(3), pp243.
- 141 Karaca S., Gürses A and Bayrak R., 2004, Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite, *Energy Convers. Manage*. 45, pp. 1693–1704.
- 142 Kayaa Abidin, and Örenb Ali Hakan, 2005, Adsorption of zinc from aqueous solutions to bentonite, *Journal of Hazardous Materials*, 125(1-3), pp 183-189.
- 143 Kertman S. V., Kertman G. M. and Chibrikova Zh. S. 1993, Peat as a heavy-metal sorbent. *J. Appl. Chem.*U.S.S.R. 66(2), pp 465-466.
- 144 Kesenci Kemal, Sayb Ridvan and Denizl Adil. 2002, Removal of heavy metal ions from water by using poly(ethyleneglycol dimethacrylate-co-acrylamide) beads *European Polymer Journal*, 38(7) pp 1443-1448.
- 145 Khalid, A.M., Ashfaq, S.R., Bhatti, T.M., Anwar, M.A., Shemsi, A.M. and Akhtar, K. 1993. The uptake of microbially leached uranium by immobilised microbial biomass, in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, Warrendale, PA.
- 146 Khan S. A., Riaz-ur-Rehman A. and Khan M. A. 1995, Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite. *Waste Manage*. 15(4),pp 271-282.
- 147 Khan S.A., Rehman R and Khan M.A. 1995. Sorption of strontium on bentonite. *Waste Manage*. 15, pp. 641–650.
- 148 Kiwi, J., Pulgarin, C., Peringer, P. and Grätzel, M., 1993. Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment. *Appl. Catal., B Environ.* 3, pp. 85–89.
- 149 Knocke W R and Hemphil L H 1981, Mercury (II) sorption by waste rubber. Wat. Res. Vol.15 No. 2 pp 275 –282.
- 150 Kobya M., Demirbas E., Senturka E. and Incea M., 2005, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone *Bioresource Technology*,96 (3), pp 1518-1521.
- 151 Krishnan A.K and Anirudhan T.S., 2002 Removal of mercury(II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies, *J. Hazard. Mater.* 92 pp. 161.

- 152 Kross, B.C., Nicholson, H.F. and Ogilvie, L.K., 1996. Methods development study for measuring pesticide exposure to golf course workers using video imaging techniques. *Appl. Occup. Environ. Hyg.* 11, pp. 1346–1351.
- 153 Kuyucak, N and Volesky, B. 1988. New algal biosorbent for a gold recovery process in BioHydrometallurgy: Proceeding of the Internat. Symp., Norris, P.R. and Kelly D.P., (eds), Sci Technol Letters, Kew, Surrey, U.K., 453-464.
- 154 Kuyucak, N. and Volesky, B. 1989. Accumulation of cobalt by marine alga, Biotechnol.Bioeng. 33(7), pp 809-14.
- 155 Kuyucak, N. and Volesky, B. 1988. Biosorbents for recovery of metals from industrial solutions. *Biotechnol. Lett.* 10, pp 137--42.
- 156 Langmuir I, 1918, The adsorption of gases on plane surfaces of glass, mica and platinum. *J Am. Chem. Soc.* 40, pp 1361-1403.
- 157 Lagergren, S. 1898, Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. *Handlingar*, Band 24, No. 4, p. 1-39.
- 158 Lee S.M and Davis A.P., 2001. Removal of Cu (II) and Cd (II) from aqueous solution by seafood processing waste sludge *Water Res.* 35, pp. 534–540.
- 159 Leppert D. 1990, Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil andwater. *Mining Eng.* 42(6), pp 604-608.
- 160 Low K. S. and Lee C. K. 1991, Cadmium uptake by the moss, *Calymperes delessertii. Besch. Bioresource Technol*.38(1),pp 1-6.
- 161 Luef, E.; Prey, T.; Kubicek, C.P. 1991 Biosorption of zinc by fungal micelial wastes. Appl. Microbiol. Biotechnol., 14, pp 688-692.
- 162 Macaskie L.E., Empson, R.M., Cheetham, A.K., Grey, C.P. and Skarnaulis, A.J. 1992. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymatically mediated growth of polycrystalline HUO2PO4. *Science* 257, pp 782-84.
- 163 Macaskie L.E., van der lelie, D and Gutnick, D. 1997. Bacterial interaction with heavy metals in the environment. Res. Microbiol. 148,pp 513-533.
- 164 Mackaskie, L.E., 1990. An immobilised cell bioprocess for the removal of heavy metals from aqueous flows. J. Chem Technol Biotechnol. 49,pp 357-79.
- 165 Majeda A.M. Khraisheh, Yahya S. Al-degs and Mcmin Wendy A. M. 2004, Remediation of wastewater containing heavy metals using raw and modified diatomite. *Chemical Engineering Journal*, 9(2), pp 177-184.
- 166 Malkoc E and Nuhoglu 2005, Investigations of nickel (II) removal from aqueous solutions using tea factory waste. *Journal of Hazardous Materials*, 127(1-3), pp 120-128.
- 167 Manju G. N., Anoop Krishnan K., Vinod V. P and Anirudhan T. S. 2002. An investigation into the sorption of heavy metals from wastewaters by polyacrylamide-grafted iron (III) oxide. *Journal of Hazardous Materials*, 91(1-3), pp 221-238.
- 168 Mann H, 1990. Biosorption of heavy metals by bacterial biomass in Biosorption of heavy Metals, Volesky, B (ed). CRC Press, Boca Raton, FL.pp 93-137.
- 169 Martel B., Devassine M, Crini G., Weltrowski M., Bourdonneau M. and Morcellet M., 2001, Preparation and sorption properties of a beta-cyclodextrin-linked chitosan derivative, *J. Polym. Sci. Part A: Polym. Chem.* 39, pp. 169–176.
- 170 Masri M. S. and Friedman M. 1974. Effect of chemical modification of wool on metal ion binding. *J. Appl. Polymer Sci.* 18, pp 2367-2377.
- 171 Masri M. S., Reuter F. W. and Friedman M. 1974, Binding of metal cations by natural substances. *J. Appl. Polymer Sci.* 18,pp 675-681.
- 172 Matheickal Jose T. and Qi Ming Yu. 1996. Biosorption of lead from aqueous solutions by marine algae ecklonia radiata *Water Science and Technology*.34 (9), pp 1-7.

- 173 Matos G. D and Arruda M. A. Z. 2003. Vermicompost as natural adsorbent for removing metal ions from laboratory effluents, *Process Biochemistry*, 39(1) pp 81-88.
- 174 Mattuschka, B., Junghaus, K. and Straube G. 1993. Biosorption of metals by waste biomass, in Biohydrometallurgical Technologies. Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, Warrendale, PA.
- 175 McDonald, C.N. and Bajwa, R.S. 1977 Removal of toxic metal ions from metal finishing wastewater by solvent extraction. *Sep. Sci.*, 12, pp 435-445.
- 176 McGeorge, L. J., Louis, J. B., Atherholt, T. B. and McGarrity, G. J. 1985. Mutagenicity analyses of industrial effluent: Results and considerations for integration into water pollution control programs.-In: Short-Term Bioassays in the Analysis of Complex Environmental Mixtures IV (eds M. D. Waters et al.), Plenum Press, New York.
- 177 McKay G., Blair H. S. and Findon A. 1989, Equilibrium studies for the sorption of metal ions onto chitosan *Ind. J. Chem. A* 28, pp 356-360.
- 178 McLelland J. K. and Rock C. A. 1988, Pretreating landffll leachate with peat to remove metals. *Water, Air Soil Poll*. 37, pp 203-215.
- 179 Meuniera N., Laroulandieb J., Blais J. F and Tyagi J. F., 2003, Cocoa shells for heavy metal removal from acidic solutions. *Bioresource Technology*, 90 (3), pp 255-263.
- 180 Mineral Resources Institute Technical Report Series 1985, Use of Alabama peat as an adsorbent for heavy metals. MRI Technical Report Series, T.R. No. 12.
- 181 Morgan-Sagastume, J.M., Jimenez, B. and Noyola, A., 1997. Tracer studies in a laboratory and pilot scale UASB reactor. *Environ. Technol.* 18, pp. 817–826.
- 182 Munther Kandah. 2001. Zinc adsorption from aqueous solutions using disposal sheep manure waste (SMW). *Chemical Engineering Journal*, 84(3), pp 543-549.
- 183 Namasivayam C. and. Periasamy, K 1993, Bicarbonate treated peanut hull carbon for Hg(II) removal from aqueous solution, *Water Res.* 27, pp. 1663–1668.
- 184 Nemec, P., Prochazka, H., Stamberg, K., Katzer, J., Stamberg, J., Jilek, R. and Hulak, P. 1977. Process of treating mycelia of fungi for retention of metals. (U.S. Patent 4 021 368).
- 185 Niu H., Xu X. S. and Wang J. H. 1993, Removal of lead from aqueous solutions by penicillium biomass. *Biotechnol. Bioeng.* 42, 785-787.
- 186 Niu, H, Xu, XS, Wang, JH and Volesky, B. 1993. Removal of lead from aqueous solutions by Penicillium biomass. *Biotechnol. Bioeng.* 42, 785-787.
- 187 Nuhoglu Y., Malkoca E., Gürsesb A.and Canpolat N.2002, The removal of Cu(II) from aqueous solutions by Ulothrix zonata. *Bioresource Technology*. 85 (3), pp 331-333.
- 188 Onsùyen E. and Skaugrudé 1990, Metal recovery using chitosan. J. *Chem. Tech. Biotechnol.* 49, pp 395-404.
- 189 Orhan Y.1993, The removal of heavy metals by using agricultural wastes. *Water Sci.Technol.* 28(2), pp 247-255.
- 190 Ozer Ayla, Ozer Dursun and H. Ibrahim Ekiz, 1999, *Process Biochemistry* 34 (1999) pp 919–927.
- 191 Padmavathy V, Vasudevan P and Dhingra S.C 2003, Biosorption of nickel (II) ions on Baker's yeast, *Process Biochem.* 38 (10), pp. 1389–1395.
- 192 Paknikar, K.M., Palnitkar, U.S and Puranik, P.R. 1993. Biosorption of metals from solution by mycelial waste of Pencillium chrysogenum, Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, Warrendale, PA.

- 193 Pala A. and Tokat E., 2002, Color removal from cotton textile industry wastewater in an activated sludge system with various additives, *Water Res.* 3, pp. 2920–2925.
- 194 Panday K. K., Prasad G. and Singh V. N. 1984, Removal of Cr(VI) from aqueous solutions by adsorption on fly ash-wollastonite. *J. Chem. Tech. Biotechnol.*,A 34, pp 367-374.
- 195 Panday K.K. Prasad, G and Singh V.N., 1984Removal of Cr(VI) from aqueous solutions by adsorption on fly ash-wollastonite. *J. Chem. Technol. Biotechnol.* 34A, pp. 367–374.
- 196 Panday K.K., Prasad G and. Singh V.N, 1985. Copper(II) removal from aqueous solutions by fly ash *Water Res.* 19, pp. 869–873.
- 197 Panday K.K., Prasad G. and Singh. V.N. 1986. Mixed adsorbents for Cu(II) removal from aqueous solutions *Environ. Technol. Lett.* 7, pp. 547–554.
- 198 Parab H, Joshi S, Shenoy N, Lali A, Sarma U S and Sudersanan M. 2006, Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) on to coir pith. *Process Biochemistry*, 41(3), pp 609-615.
- 199 Patterson, J.W. 1975 wastewater Treatment Technology. Ann Arbor Science, Ann Arbor, Michigan 1975.
- 200 Peniche-Covas C., Alvarez L. W. and Arguelles-Monal W. 1992 The adsorption of mercuric ions by chitosan. *J.Appl. Polymer Sci.* 46,pp 1147-1150.
- 201 Peniche-Covas C., Alvarez L.W. and. Arguella-Monal W, 1991, *J. Appl. Polym. Sci.* 46, pp. 1147–1150.
- 202 Periasamy K. and Namasivayam C., 1994, Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: adsorption rates and equilibrium studies. *Ind. Eng. Chem. Res.* 33, pp. 317–320.
- 203 Petek, J. and Glavic, P., 1996. An integral approach to waste minimization in process industries. *Resour. Conserv. Recycl.* 17, pp. 169–188.
- 204 Petersen J. N., Davison B. H., Scott C. D. and Blankinship S. L. 1991, Size changes associated with metal adsorption onto modified bone gelatin beads. *Biotechnol. Bioeng.* 38, pp 923-928.
- 205 Ping Xin Sheng, Yen-Peng Ting, J. Paul Chen and Liang Hong 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. *Journal of Colloid and Interface Science*, 275 (1), pp 131-141
- 206 Pollard S.J.T., Fowler G.D., Sollars C.J and Perry R., 1992, Low cost adsorbents for waste and waste waster treatment: a review, *Sci. Total Environ*. 116, pp. 31– 52
- 207 Pradas E.G., Sanchez M.V., Cruz F.C., Viviana M.S.and Perez M.F, 1994, Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Technol. Biotechnol. 59, pp. 289–295.
- 208 Pradhan J., Das S.N. and Thakur R.S. 1999, Adsorption of Hexavalent Chromium from Aqueous Solution by Using Activated Red Mud *J. Colloid Interf. Sci.* 217, pp. 137–141.
- 209 Prakasham, RS, Merrie, JS, Sheela, R, Saraswati N and Ramakrishnan S.V. 1999, Biosorption of Chromium (VI) by free and immobilized *Rhizopus arrhizus*. Environmental Pollution, 104, pp 421-427.
- 210 Puranik, P. R. and Paknikar, K. M., 1997. Biosorption of lead and zinc from solutions using *Streptoverticillium cinnamoneum* wastebiomass. *J. Biotechnol.*, **55**, 113–124.
- 211 Radhika, M., Kadirvelu, K., Shanthi, K., Pattabhi, S., 2001, Adsorptive removal of Rhodamine-B from aqueous solution onto activated carbon prepared from low cost material. In: Proceedings of ENVIRO 2001, National Conference on Control of Industrial Pollution and Environmental Degradation, Coimbatore, India.

- 212 Rajeshwarisivaraj, Sivakumar S., Senthilkumar P. and Subburam V., 2001, Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution, *Bioresour. Technol.* 80, pp. 233–235.
- 213 Randall J. M., Bermann R. L., Garrett V. and Waiss A.C., Jr. 1974a Use of bark to remove heavy metal ionsfrom waste solutions. *Forest Prod. J.* 24(9),pp 80-84.
- 214 Randall J. M., Hautala E. and McDonald G. 1978, Binding of heavy metal ions by formaldehyde-polymerized peanut skins. *J. Appl. Polymer Sci.* 22(2), pp 379-387.
- 215 Randall J. M., Hautala E. and Waiss A. C. Jr. 1974b, Removal and recycling of heavy metal ions from miningand industrial waste streams with agricultural byproducts. Proceedings of the Fourth Mineral WasteUtilization Symposium. Chicago, IL, May 7-8, 1974, pp. 329-334.
- 216 Reed, B.E. and Arunachalam S. 1994. Use of granular activated carbon columns for the lead removal. *J. Environ. Engg.*, 120, pp 416-436.
- 217 Reed, B.E., Arunachalam, S and Thomas, B. 1994 Removal of lead and cadmium from aqueous waste streams using granular activated carbon (GAC) columns. *Environ. Prog.*, 13, pp 60-64.
- 218 Rich G, Cherry K, (1987) Hazardous Waste Treatment Technologies, Pudvan Publishers, New York.
- 219 Ricordela S, Taha S, Cisse I and Dorange G. 2001. Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling, Separation and Purification Technology, 24 (3), pp 389-401.
- 220 Roberto Herrero, Pablo Lodeiro, Carlos Rey-Castro, Teresa Vilariño and Manuel E. Sastre de Vicente, 2005. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga *Cystoseira baccata .Water Res*, 39(14), pp 3199-3210
- 221 Roberts E. J. and Rowland S. P. 1973, Removal of mercury from aqueous solutions by nitrogen-containing chemically modified cotton. *Envir. Sci. Technol.* 7(6), pp 552-555.
- 222 Rodriguez-Reinoso F., Activated carbon: structure, characterization, preparation and applications. In: H. Marsh, E.A. Heintz and F. Rodriguez-Reinoso, Editors, Introduction to Carbon Technologies, Universidad de Alicante, Secretariado de Publicaciones (1997).
- 223 Rollinson C.L, 1973, Chromium, Molybdenum, Tungsten. In: Trotman-Dickenson, Comprehensive Inorganic Chemistry, Third ed. Pergamon Press, Oxford. pp: 691-694.
- 224 Rorrer G. L., Hsien T.-Y. and Way J. D. 1993, Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. *Ind. Eng. Chem. Res.* 32, pp 2170-2178.
- 225 Rorrer G.L., Way J.D.,2002, Chitosan Beads to Remove Heavy Metal from Wastewater, Dalwoo-ChitoSan, May 2002, ftp://dalwoo.com/chitosan/rorrer.html.
- 226 Rosenberger, R. F., in *The Filamentous Fungi* (eds Smith, J. E. and Berry, D. R.), Edward Arnold, London, 1975, vol. 2, pp. 328–342.
- 227 Rozada F., Calvo L.F., Garcia A.I., Martin-Villacorta J. and Otero M., 2003, Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems, *Bioresour. Technol.* 87, pp. 221–230.
- 228 Sağ Y and Kutsal T. 1995 Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics, *The Chemical Engineering Journal* 60 181-188.
- 229 Sahoo D.K., Kar R.N and Das R.P, 1992, Bioaccumulation of heavy metal ions by *Bacillus circulans*, *Bioresour. Technol.* 41, pp. 177–179.
- 230 Santiago I., Worland V. P., Cazares-Rivera E. and Cadena F. 1992, Adsorption of hexavalent chromium onto tailored zeolites. 47th Purdue Industrial Waste Conference Proceedings, pp. 669-710. Lewis Publishers, Inc., Chelsea, MI.

- 231 Sayler G. S., Nelson J. D., Jr., and. Colwell R. R 1975 Role of Bacteria in bioaccumulation of mercury in the Oyster *Crassostrea virginica*. *Appl Microbiol*.; 30(1): 91–96.
- 232 Scarpi, C., Ninci, F., Centini, M. and Anselmi, C., 1998. High-performance liquid chromatography determination of dir Schuler, C.A., Anthony R.G., and Ohlendorf. H.M. 1990. Selenium in Wetlands and Waterfowl Foods and Kesterson Reservoir, California, 1984. Archives of Environmental Contamination and Toxicology 29:845-853.
- 233 Schiewer, S and Wong, M.H. 1999. Metal binding stoichiometry and iostherm choice in biosorption. *Environ. Sci. Technol.* 333, (21), pp 3821-28.
- 234 Schiewer, S, Fourest, E, Chong, KH and Volesky, B. 1995. Ion exchange in biosorption by dried seaweed: experiments and model predictions. Biohydrometallurgical Processing, Vol.2, Proc. Internat. Biohydromet. Symp., Jerez, CA, Vargas, T, Toledo, H and Wiertz, JV (eds.) Univ. Chile, Santiago, Chile, p. 219-228.
- 235 Schiewer, S. and Volesky, B. 1996. Modeling multi-metal ion exchange in biosorption.
- 236 Schiewer, S. and Volesky, B. 1997. Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. *Environ. Sci. Technol.* 31, pp 2478-2485.
- 237 Schmuhl R., Krieg H.M and Keizer K. 2001, Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies *Water S.A.* 2, pp. 1–7.
- 238 Selatnia A, Boukazoula A, Kechid N, Bakhti MZ and Chergui A, 2004. Biosorption of Fe ³⁺ from aqueous solution by a bacterial dead *Strptomyces rimosus* biomass. *Process Biochemistry*, pp 1643-1651.
- 239 Sen A K and De A K 1987, Adsorption of mercury (II) by coal fly ash, *Water Res.* 21, pp. 885–888.
- 240 Sen A.K and Arnab K.D., 1987, Adsorption of mercury(II) by coal fly ash Water Res. 21, pp. 885–888.
- 241 Sharma C., Gupta G. S., Prasad G. and Rupainwar D. C. 1990 Use of wollastonite in the removal of Ni(II) from aqueous solutions. *Water Air Soil Poll*. 49, pp 69-79.
- 242 Sharma D. C. and Forster C. F. 1993, Removal of hexavalent chromium using sphagnum moss peat. *WaterRes*. 27(7), 1201-1208.
- 243 Sharma D. C. and Forster C. F. 1994, The treatment of chromium wastewaters using the sorptive potential of leaf mould. *Bioresource Technol.* 49, pp 31-40.
- 244 Sharma D. C. and Forster C. F. 1995, Continuous adsorption and desorption of chromium ions by sphagnum moss peat. *Process Biochem.* 30(4), pp 293-298.
- 245 Sharma D.C. and Forster C.F.1993. Removal of hexavalent chromium using sphagnum moss peat. *Water Res.* 2, pp. 1201–1208.
- 246 Sharma D.C.and Forster 1994. Continuous adsorption and desorption of chromium ions by sphagnum moss peat. *Process Biochem.* 30, pp. 293–298.
- 247 Sharma, D.C. and Forster, C.F. 1994. A preliminary examination onto the adsorption of hexavalent chromium using low cost adsorbents. *Bioresource Technol.*, 47, pp 257-264
- 248 Shichi T and Takagi K, 2000, Clay minerals as photochemical reaction fields, J. *Photochem. Photobiol. C: Photochem. Rev.* 1, pp. 113–130.
- 249 Shukla A., Zhang Y.H, Dubey P., Margrave J.L. and Shukla S.S., 2002, The role of sawdust in the removal of unwanted materials from water, *J. Hazardous Mater*. B95, pp. 137–152.
- 250 Shukla S. R. and Sakhardande V. D. 1992, Column studies on metal ion removal by dyed cellulosic materials. *J. Appl. Polymer Sci.* 44, pp 903-910.
- 251 Shukla S.R. and Roshan S. Pai, 2005, Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres, *Bioresource Technology*, 96 (13), pp 1430-1438.

- 252 Shukla S.R.and Roshan S. Pai. 2005, Adsorption Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. *Separation and Purification Technology*, 43(1), pp 1-8.
- 253 Shukla, S.S. and Sakherdande V.D. 1990 Cupric ion removal by dyed cellulosic materials. J. Appl. Poly Sci, 41, pp 2655-2663.
- 254 Siegel, S., Keller, P., Galun, M., Lehr, H., Siegel, B. and Galun, B.1986, Biosorption of lead and chromium by penicillium preparations *Water Air Soil Pollut.* **27**, pp 69–75.
- 255 Singh, D.B., Rupainwar, D.C. and Prasad G, 1991. Studies on the removal of Cr (VI) from wastewater by feldspar. J. Chem. Technol. Biotechnol, 53, pp 127-131.
- 256 Sitting M., Toxic Metals—Pollution Control and Worker Protection, Noyes Data Corporation, New Jersey (1976).
- 257 Smith E.F., McCarthy P., Yu T.C and Mark Jr H.B., 1977, Sulfuric acid treatment of peat for cation exchange, *Chem. Eng.* J. 49, pp. 633–638.
- 258 Snell F.D and. Snell C.T, Colorimetric Methods of Analysis, 3rd edn, Van Nostrand, New York, 1961.
- 259 Srivastava K., Bhattacharjee G., Tyagi R., Pant N and Pal N 1988. Studies on the removal of some toxic metal ions from aqueous solutions and industrial waste. Part I (Removal of lead and cadmium by hydrous iron and aluminium oxide) *Environ. Technol. Lett.* 9 (1988), pp. 1173–1185.
- 260 Srivastava S. K., Singh A. K. and Sharma A. 1994, Studies on the uptake of lead and zinc by lignin obtained from black liquor a paper industry waste material. *Environ. Technol.* 15, pp 353-361.
- 261 Srivastava S.K, Gupta V.K and Mohan D. 1997. Removal of lead and chromium by activated slag ablast-furnace waste *J. Environ. Eng.* 123, pp. 461–468.
- 262 Srivastava S.K., Tyagi R. and Pal N. 1989, Studies on the removal of some toxic metal ions. Part II (removal of lead and cadmium by montmorillonite and kaolinite) *Environ. Technol. Lett.* 10, pp. 275–282.
- 263 Strandberg G W, Shumate S E II and Parrot J R Jr, 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and *Pseudomonas aeruginosa*. *Appl Environ Microbiol* 41, pp 237-245.
- 264 Stratton, G. W., in *Review in Environmental Toxicology* (ed. Hodgson, E.), Elsevier, Amsterdam, 1987, pp. 85–94.
- 265 Stuetz, R.M., Madgwick, J.C. and Gee A.R. 1993. Immobilisation of biosorbed metal ions in Proceedings of the international biohydrometallurgical symposium, Torma, A.E., Apel, M.L. and Brierley, C.L., (eds), The Minerals, Metals and Materials Society, Warrendale, PA.
- 266 Tare, V, Jawed, M and Iyengar, L. 1988 Application of xanthates in heavy metal removal. *Indian Assoc. Wate. Pollut. Control. Tech. Annual*, 15, pp 88-94.
- 267 Taty-Costodes Christian V., Fauduet Henri, Catherine Porte and Alain Delacroixa, 2003. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of *Pinus sylvestris*. *Journal of Hazardous Materials*. 105 (1-3), pp 121-142.
- 268 Teles de Vasconcelos L. A. and Gonzaalez C. G. 1994, Adsorption equilibria between pine bark and several ions in aqueous solution, 1. Pb(II). *Eur. Water Poll. Control* 4(1), pp 41-51.
- 269 Teles de Vasconcelos L. A. and Gonzalez Beca C. G. 1993, Adsorption equilibria between pine bark and several ions in aqueous solution, *Water Poll. Control* 3(6), pp 29-39.
- 270 Teng L.T., Khor E., Tan T.K., Lim L.Y. and Tan S.C., 2001, Concurrent production of chitin from shrimp shells and fungi, *Carbohydr. Res.* 332, pp. 305–316.
- 271 Teresa J. Naimo 1995, A review of the effects of heavy metals on freshwater mussels, Ecotoxicology, Vol 4, No 6, pp 341 362.

- 272 Tobin, J.M., Cooper D.G., and Neufield R.J. 1984. Uptake of metal ions by *Rhizopus arrhizus. Appl. Envir. Microbiol.* 47, 821-24.
- 273 Toledo, B.I., Utrilla, J.R., Gracia, M.A. and Cistilla, C.M. Influence of the oxygen surface complexes of activated carbon on the adsorption of chromium ions from aqueous solution: Effect of sodium chloride and humic acid, *Carbon*, 32, pp 93-100.
- 274 Tong P., Baba Y., Adachi Y. and Kawazu K. 1991, Adsorption of metal ions on a new chelating ion-exchange resin chemically derived from chitosan. *Chem.Lett*, 9, pp 1529-1532.
- 275 Townsley, C.C., Ross, I.S., and Atkins A.S., 1986. Biorecovery of metallic residues from various industrial effluents using filamentous fungi, in Fundamental and Applied Biohydrometallurgy, Lawrence, R.W., Branion, R.M.R. Ebner, H.G. (eds). Elsevier, Amsterdam, The Netherlands. 279-289.
- 276 Tsezos, M and Volesky, B. 1981, Biosorption of uranium and thorium, *Biotechnol. Bioeng.* 23, pp 583-604.
- 277 Tummavuori J. and Aho M. 1980a, On the ion-exchange properties of peat. Part I: On the adsorption of some divalent metal ions (Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺,Cd²⁺ and Pb²⁺) on the peat. *Suo* 31(4), pp 79-83.
- 278 Tummavuori J. and Aho M. 1980b, On the ion-exchange properties of peat. Part II: On the adsorption of alkali, earth alkali, aluminum (III), chromium (III), iron (III), silver, mercury (II) and ammonium ions to the peat. *Suo* 31(2-3), pp 45-51.
- 279 Tünay, O., Kabdasli, I., Ohron, D. and Cansever, G., 1999. Use and minimalization of water in leather tanning processes. *Water Sci. Technol.* 40/1, pp. 237–244.
- 280 Turner D.R., Pabalan R.T. and Bertetti F.P. 1998. Neptunium (V) sorption on montmorillonite: an experimental and surface complexation modeling study. *Clays Clay Miner.* 46, pp. 256–269.
- 281 U.S. EPA. Environmental Pollution: Control Alternatives: Ecnomics of Wastewater Treatment Alternatives for the Electroplating Industry. EPA 625/5-79-016, Cincinnati, Ohio (1979).
- 282 U.S.EPA Control and treatment technology for the metal finishing industry: Sulphide precipitation, EPA 625/8-80-003, Cincinnati, Ohio (1980).
- 283 U.S.EPA. Control Technology for the metal finishing industry Evaporators, EPA-625/8-79-002, Cincinnati, Ohio (1979a).
- 284 Ucun Handan, Kemal Bayhan Y, Yusuf Kaya, Avni Cakici and Faruk Algur O, (2002) Biosorption of chromium (VI) from aqueous solution by cone biomass of *Pinus sylvestris*. *Bioresource Technology*, 85, pp 155-158
- 285 Udaybhaskar P., Iyengar L. and Rao A.V.S.P., 1990, Hexavalent chromium interaction with chitosan *J. Appl. Polym. Sci.* 39, pp. 739–747.
- 286 USEPA. U.S. Environmental Protection Agency. 1987. Quality Criteria for Water. EPA Publication 440/5-86-001. U.S. Gov. Prin. Office, Washington D.C.
- 287 USEPA. U.S. Environmental Protection Agency. 1993a. Guidance Specifying Management Measures for Sources of Nonpoint Pollution in Coastal Waters. EPA: Washington DC. Available through EPA Wetlands Hotline. 1-800-832-7828.
- 288 Van der Heen, P. The removal of traces of heavy metals from drinking water and industrial effluent with ion exchanger. The Regional Chemical Society Meeting (1977).
- 289 Varma A.J., Deshpande S.V and Kennedy J.F., 2004, Metal complexation by chitosan and its derivative: a review, *Carbohydr. Polym.* 55, pp. 77–93.
- 290 Vaszquez G., Antorrena G., Gonzalez J. and Doval M. D. 1994, Adsorption of heavy metal ions by chemically modified Pinus Pinaster bark. *Bioresource Technol*. 48, 251-255.

- 291 Vijayaraghavan K., Jegan J., Palanivelu K. and Velan M. 2005, Biosorption of copper, cobalt and nickel by marine green alga *Ulva reticulata* in a packed column. *Chemosphere* 60(3), pp 419-426.
- 292 Viraraghavan T. and Kapoor A. 1994, Adsorption of mercury from wastewater by bentonite. Appl. Clay Sci, 9, pp 31-49.
- 293 Viraraghavan T. and Rao G. A. K. 1993, Adsorption of cadmium and chromium from wastewater by peat. *Int.J. Environ. Studies*, 44, pp 9-27.
- 294 Virta R., USGS Minerals Information, US Geological Survey Mineral Commodity Summary 2002, January 2002, ftp://minerals.usgs.gov/minerals/pubs/commodity/clays/190496.pdf.
- 295 Volesky B. and Prasetyo I. 1994, Cadmium removal in a biosorption column. *Biotechnol. Bioeng.* 43, pp 1010-1015.
- 296 Volesky, B and May-Phillips, HA 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. *J. Appl. Microbiol. Biotechnol.* 42, pp 797-806.
- 297 Volesky, B. 1999. Biosorption for the next century, Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Internat. Biohydrometallurgy Symposium Proceedings, 1999, volume B, Ballester, A. & Amils, R. (eds.) Elsevier Sciences, Amsterdam, The Netherlands: pp.161-170.
- 298 Volesky, B., 2003. Sorption and Biosorption, BV Sorbex, St. Lambert, Quebec, pp. xii, 316.
- 299 Volesky, B., and Kuyucak, N., Biosorbent for gold, US Patent No. 4,769,223, 1988.
- 300 Volesky, B., and Tsezos, M., 1982, Separation of uranium by Biosorption, *Biotechnol. Bioeng.* 23, pp 583-604.
- 301 Volesky, Bohumil. Biosorption of Heavy Metals. CRC Press, Boston, USA, November 1990. 408 p. ISBN 0849349176.
- 302 Wan Ngah W. S, Endud C. S and Mayanar R. 2002, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. *Reactive and Functional Polymers*, 50(2), pp 181-190.
- 303 Wan Ngah W.S. and Isa I.M.J. 1998. Comparison study of copper ion adsorption on chitosan, dowex A-1, and zerolit 225. *Appl. Polym. Sci.* 67, pp. 1067–1070.
- 304 Wan Ngah W.S., Endud C.S.andMayanar R. 2002, Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, *Reactive Functional Polym. J.* 50, pp. 181–190.
- 305 Wase, J., Forster, C.F., 1997. Biosorbents for Metal Ions; Taylor & Francis, London, pp. 238.
- 306 Watonabe, T and Ogawa, K. 1929 Activated carbon for purifying copper electrolytes. *Chem. Abs.* 24: 1037.
- 307 Whang, J.S., Young, D and Pressman, M. Design of soluble sulphide precipitation system for heavy metal removal. Ind. Waste.Proc. 13th Mid Atlantic Conference. Ann Arbor Science (1981) pp 63-71.
- 308 WHO Environmental Health Criteria 101, Methyl Mercury, Geneva, World Health Organization (1990) 68.
- 309 WHO Environmental Health Criteria 118, Inorganic Mercury, Geneva, World Health Organization (1991) 68.
- 310 Wilson M. W. and Edyvean R. G. 1994, Biosorption for the removal of heavy metals from industrial wastewaters. Institution of Chemical Engineers Symposium Series 1994. *Environ. Biotechnol*.pp 89-91.
- 311 Wing R. E. 1983, Dissolved heavy-metal removal by insoluble starch xanthate (ISX). Environ. Prog. 2(4),pp 269-272.
- 312 Wing R. E. and Rayford W. E. 1977, Heavy metal removal processes for plating rinse waters. Proceedings of the 32nd Industrial Waste Conference May 10-12, 1977. Purdue University, Lafayette, IN.

- 313 Wing, R.E. Process for heavy metal removal from plating wastewaters. In Proc. 1st Annual EPA3AES. Conference on Advanced Pollution Control for metal finishing industry, Lake Buena Vista, Florida (1978).
- 314 Wing, R.E., Navickis, L.D., Jasberg, B.K., and Rayford, W.E. Removal of heavy metals from industrial wastewaters using insoluble starch xanthate. EPA-600/22-78-085 (1978).
- 315 Wong Y.C., Szeto Y.S., Cheung W.H. and McKay G., 2004, Adsorption of acid dyes on chitosan-equilibrium isotherm analyses, *Proc. Biochem.* 39, pp. 693–702.
- 316 Wu F.C., Tseng R.L and Juang R.S., 2000, Comparative adsorption of metal and dye on flake- and bead-types of chitosan prepared from fishery wastes, *J. Hazardous Mater.* B73, pp. 63–75.
- 317 Yadava K. P., Tyagi B. S. and Singh V. N. 1991, Effect of temperature on the removal of lead(II) by adsorption on China clay and wollastonite. *J. Chem. Tech. Biotechnol.* 51, pp 47-60.
- 318 Yadava K.P, Tyagi B.S.and Singh V.N. 1991. Effect of temperature on the removal of lead (II) by adsorption on China clay and wollastonite *J. Chem. Biotechnol.* 51, pp. 47–60.
- 319 Yang T. C. and Zall R. R. 1984. Absorption of metals by natural polymers generated from seafood processing wastes. *Ind. Eng. Chem. Prod. Res. Dev.* 23, pp 168-172.
- 320 Yang, J. and Volesky, B. 1999. Removal and concentration of uranium by seaweed biosorbent. Internat. Biohydrometallurgy Symposium Proceedings, 1999, volume B, Ballester, A. & Amils, R. (eds.) Elsevier Sciences, Amsterdam, The Netherlands: pp.483-492.
- 321 Yang, J. and Volesky, B. 1999. Biosorption of uranium by Sargassum biomass. *Wat. Res* . 33, 3357-3363.
- 322 Yang, J. and Volesky, B. 1999. Cd biosorption rate in protonated Sargassum biomass. *Environ. Sci. Technol.* 33, pp 751-75
- 323 Zakaria A. Mohamed 2001, Removal of cadmium and manganese by a non-toxic strain of the freshwater cyanobacterium *Gloeothece magna Water Research*, 35 (18), pp 4405-4409
- 324 Zarraa M. A. 1995, A study on the removal of chromium (VI) from waste solutions by adsorption on to sawdust in stirred vessels. *Adsorption Sci. Technol*.12(2), pp 129-138.
- 325 Zhou J.L and Banks C.J., 1991. Removal of humic acid fraction by Rhizopus arrhizus: uptake and kinetic studies. *Environ. Technol.* 12, pp. 859–869.
- 326 Zouboulis A.I. and Kydros K.A. 1993. Use of red mud for toxic metals removal: The case of nickel *J. Chem. Technol. Biotechnol.* 58, pp. 95–101.
- 327 Zümriye Aksu, Ünsal Aćkel and Tülin Kutsal 1997, Application of Multicomponent Adsorption Isotherms to Simultaneous Biosorption of Iron (III) and Chromium (VI) on *C vulgaris. J. Chem. T ech. Biotechnol.* 70, pp 368-378.